欧美……一区二区三区,欧美日韩亚洲另类视频,亚洲国产欧美日韩中字,日本一区二区三区dvd视频在线

官方微信|手機版

產(chǎn)品展廳

產(chǎn)品求購企業(yè)資訊會展

發(fā)布詢價單

化工儀器網(wǎng)>產(chǎn)品展廳>物理特性分析儀器>其它物性測試分析儀器>應力儀>FLUORESCENT CELL MEMBRAN Flipper-TR細胞膜膜張力探針

分享
舉報 評價

FLUORESCENT CELL MEMBRAN Flipper-TR細胞膜膜張力探針

具體成交價以合同協(xié)議為準

聯(lián)系方式:李勝亮查看聯(lián)系方式

聯(lián)系我們時請說明是化工儀器網(wǎng)上看到的信息,謝謝!


世聯(lián)博研(北京)科技有限公司(Bio Excellence International Tech Co.,Ltd)簡稱為世聯(lián)博研。世聯(lián)博研是一家集進口科研儀器代理銷售以及實驗技術服務于一體的技術公司。世聯(lián)博研專注生物力學和3D生物打印前沿科研設備代理銷售及科研實驗項目合作服務,內(nèi)容涵蓋了血管力學生物學、生物力學建模仿真與應用、細胞分子生物力學、組織修復生物力學、骨與關節(jié)生物力學、口腔力學生物學、眼耳鼻咽喉生物力學、康復工程生物力學、生物材料力學與仿生學、人體運動生物力學等生物力學研究以及生物材料打印、打印樣品生物力學性能測試分析的前沿領域科研利器和科研服務。

世聯(lián)博研的客戶范圍:
科研院所單位、生物醫(yī)學科研高校、醫(yī)院基礎科研單位等。

世聯(lián)博研公司代理的品牌具有:
1)近10年長期穩(wěn)定的貨源
2)以生物力學、細胞力學、細胞生物分子學、生物醫(yī)學組織工程、生物材料學為主,兼顧其他相關產(chǎn)品線
3)提供專業(yè)產(chǎn)品培訓和銷售培訓
4)良好的技術支持
5)已成交老客戶考證
6)每年新增的貨源。

細胞應力加載儀,3細胞打印機,NanoTweezer新型激光光鑷系統(tǒng),PicoTwist磁鑷,美國NeuroIndx品牌Kuiqpick單細胞捕獲切割系統(tǒng)

應用領域 醫(yī)療衛(wèi)生

Flipper-TR細胞膜膜張力探針

Flipper-TR ® 是一個活細胞熒光膜張力探針,實時地測量活細胞膜張力

Flipper-TR® fluorescent cell membrane tension probe

Flipper-TR®膜張力探針介紹:

 

熒光膜張力探針Flipper-TR®(Spirochrome, Ltd.)的面世解決了這些挑戰(zhàn),它可以搭配FLIM(熒光壽命成像顯微鏡)可以實現(xiàn)對活細胞膜的可視化染色。Flipper-TR®是一種活細胞熒光膜張力探針,是di一個為機械生物學領域開發(fā)的熒光膜張力探針。Flipper-TR®的熒光壽命與膜張力密切相關,利用FLIM可將不同壽命的熒光轉(zhuǎn)換成不同的顏色顯現(xiàn)出來,因此可以通過熒光和顏色及年度即可直觀的測量膜內(nèi)張力的時空分布。Flipper-TR®開辟了一個quan新的領域,它提供了一種靈敏、可靠和無創(chuàng)的方法,通過這種方法可以快速、實時地測量活細胞的膜張力(圖1)。

 

圖1. Flipper-TR感知高滲休克處理后的細胞膜張力變化

 

Flipper-TR感知高滲休克處理后的細胞膜張力變化

 

左側(cè):與 Flipper -TR染色的細胞的圖像®   高滲休克之前(上圖)和后(下圖)。

灰色程度代表熒光強度,不同顏色代表不同熒光壽命(藍-紅:0-6納秒)

側(cè):直方圖顯示高滲休克后的壽命變化,圖片由Colom等人提供。

 

熒光Flipper -TR ®探針的工作原理是特異性地靶向細胞質(zhì)膜,通過報告熒光壽命變化來反映膜張力變化情況。它是Flipper探針家族中的成員,它通過機械載體上的兩個扭曲的二硫噻吩的扭轉(zhuǎn)角和極化來感知脂質(zhì)雙層膜結(jié)構(gòu)的變化。Flipper -TR ®自發(fā)插入到細胞的質(zhì)膜中,只有插入到脂質(zhì)膜中才會發(fā)出熒光,通過FLIM(熒光壽命成像顯微鏡)檢測熒光的強度及顏色即可判斷膜張力的大小,F(xiàn)lipper -TR ®探針具有廣泛的吸收和發(fā)射光譜; 通常在488nm處進行激發(fā),而發(fā)射光譜則在575和625nm之間(圖2)。

 

圖2. Flipper-TR的工作原理及收/發(fā)射光譜

 

Flipper-TR的工作原理及吸收/發(fā)射光譜

 

A.Flipper-TR機制及其與不同張力膜相互作用的示意圖

左側(cè):Flipper-TR的基本分子結(jié)構(gòu)

右側(cè):Flipper-TR在低張力扭曲(綠色)和高張力平行排列(紅色

 

B.乙酸乙酯中的Flipper-TR溶液進行掃描和發(fā)射掃描,并將結(jié)果繪制在同一張圖上。

點狀橙色線激發(fā)光,實心橙色線為發(fā)射光。

染色和FLIM成像的詳細步驟可以在參考文獻中找到(點擊了解)。

 

圖3 . Flipper-TR酵母細胞中的染色

Flipper-TR ® 適用于范圍廣泛的種屬:包括細菌,哺乳動物, 植物酵母

 

Flipper-TR ® 適用于范圍廣泛的種屬:包括細菌,哺乳動物, 植物和酵母

 

對Flipper-TR染色的酵母細胞進行低滲透性choc(左)或高滲性choc(右)處理。

Flipper-TR的熒光壽命不同處理條件下高低變化,不同顏色表示不同的熒光壽命。

圖片由UNIGE的Roux集團的M. Riggi提供。

 

Flipper -TR探針的常見問題解答® 

 

  1. 什么是FLIM顯微鏡以及它如何用于Flipper-TR?

 

FLIM顯微鏡全稱熒光壽命成像顯微鏡(Fluorescent Lifetime Imaging Microscopy)。膜張力研究的重要性在于,在Flipper-TR之前,膜張力測量需要耗費巨大的人力和昂貴的設備,但現(xiàn)在Flipper-TR卻可以簡單的適配當前顯微鏡來實現(xiàn)高靈敏度的張力測量,其設備可從許多供應商處獲得,它原理是基于記錄熒光團激發(fā)后發(fā)射的時間來反映膜張力的變化,其通常非常快,大約1-10納秒(ns),在FLIM成像過程中,可將熒光壽命的差異通過時間來展示,一般來說,較短的壽命為綠色,中等壽命為黃色,較長的壽命為橙色和紅色。FLIM還可以與其他高分辨率顯微技術(如全內(nèi)反射熒光(TIRF)或受激發(fā)射耗盡(STED)顯微鏡)相結(jié)合,用于高空間分辨率檢測。

 

FLIM顯微鏡需要配備許多科學顯微鏡供應商提供的時間分辨光檢測器,例如PicoQuant的升級套件,參考文獻1描述了有關FLIM顯微鏡實驗裝置的更多細節(jié)。

 

圖4 . FLIM結(jié)構(gòu)和時間分辨彩色編碼細胞圖像示意圖。

 

FLIM結(jié)構(gòu)和時間分辨彩色編碼細胞圖像示意圖

 

左側(cè):標準FLIM顯微鏡結(jié)構(gòu)圖

右側(cè):Flipper -TR®染色的細胞 ,灰度表示熒光強度,不同顏色代表熒光壽命。

圖片由Colom等人提供     Flipper-TR是瑞士Spirochrome SA的注冊商標。

 

  1. Flipper-TR探針如何檢測熒光壽命變化?

 

熒光Flipper-TR®探針通過特異性靶向細胞質(zhì)膜,并通過其熒光壽命變化來反映膜張力變化。Flipper-TR®自發(fā)地插入細胞的質(zhì)膜中,并且僅在插入脂質(zhì)膜時才會激發(fā)熒光。探針通過機械載體上的兩個扭曲的二硫噻吩之間的扭轉(zhuǎn)角和極化改變來感知脂質(zhì)雙層膜結(jié)構(gòu)的變化(參見圖5)。當處于緊張狀態(tài)時(二硫噻吩并排),發(fā)射壽命短(2-4ns),而在松弛狀態(tài)下(二硫噻吩扭曲),發(fā)射壽命則更長(4.1-8.0ns)。方差(cv)約為0.3ns(cv = 4-15%),這允許在分辨率細微變化的情況下進行高分辨率分析,在FLIM成像過程中,可將熒光壽命的差異通過時間來展示,一般來說,較短的壽命為綠色,中等壽命為黃色,較長的壽命為橙色和紅色(見圖5)

 

圖5. Flipper-TR的結(jié)構(gòu)和張力檢測機制示意圖

 

Flipper-TR的結(jié)構(gòu)和張力檢測機制示意圖

 

左邊Flipper-TR的基本分子結(jié)構(gòu)

右邊Flipper-TR低張力時扭曲(綠色)和高張力時并列排布(紅色)

 

  1. 這些探針濾光片是什么?

 

Flipper-TR探針使用長分離濾光片組進行可視化,因為其激發(fā)峰值比發(fā)射峰值短100 nm以上。因此,理想的濾光片組是488 +/- 20nm的激發(fā)波長和575-675 +/- 40nm的發(fā)射波長(圖3)。時間分辨測量方法允許非常低的背景,它在水性環(huán)境中具有低熒光,詳情參見下面的問題4。

 

  1. 為什么Flipper-TR探針與其他質(zhì)膜探針相比具有低背景?

 

Flipper-TR探針在諸如組織培養(yǎng)基或固定緩沖液等水環(huán)境中的背景非常低,因為它是*扭曲的狀態(tài),容易形成膠束并自我淬滅(參考文獻3)。插入膜后,其扭曲度變小,開始發(fā)出高熒光(見圖2)。

 

  1. Flipper-TR探頭在室溫下是否穩(wěn)定?

 

探針在室溫下以粉末形式穩(wěn)定幾天。在無水DMSO中溶解后后(不要使用舊的打開過的DMSO瓶子,可以使用Sigma或Spectrum Chemicals的干燥DMSO瓶子。在-20°C下冷凍和解凍是穩(wěn)定的,但不建議將其分成小份進行儲存,因為它在這些條件下會降解。

 

  1. Flipper-TR對細胞有毒嗎?

 

在數(shù)據(jù)表中給定的條件下操作,探針對細胞無毒的。根據(jù)細胞類型和培養(yǎng)條件,細胞一般可存活2-4天, 且熒光亮度不會有太大變化。

 

  1. Flipper-TR探針染色哪些生物和組織?

 

目前所有已知的生物都可用Flipper-TR染色,包括組織培養(yǎng)細胞,活的/固定的組織切片,哺乳動物細胞,昆蟲細胞,植物細胞,酵母和細菌。

 

  1. Flipper-TR探針是否適用于3D細胞培養(yǎng)?

 

探針能夠在3D培養(yǎng)條件下進行細胞染色。

 

  1. 膜中的量子產(chǎn)率和消光系數(shù)是多少?

 

乙酸乙酯中的量子產(chǎn)率= 0.30。

 

Flipper-TR® fluorescent cell membrane tension probe

Fluorescence of Flipper-TR tension in membranes of cell tissue cultureFlipper-TR fluorescent membrane probe dye stain mechanism of action
Flipper-TR fluorescent membrane probe dye stain mechanism of action
 

 

 

 

 

 

 

 

 

 

 

 

Flipper-TR®: A Revolutionary New Fluorescent Probe for Measuring Membrane Tension in Cells and Tissues

Flipper-TR® is a live cell fluorescent membrane tension probe which breaks down the technical barriers hitherto circumvented by technical feats known only to biophysicists with custom equipment. The Flipper-TR membrane tension probe simplifies the methodology by using standard fluorescence lifetime measurements (see Flipper-TR FAQ for practical details). Here we describe the background of Flipper-TR in more detail.

Lipid membranes are dynamic, fluid structures (~4 nm thick) which is a biological necessity as they must change shape and tension for a cell to engage in basic cellular and subcellular physiological functions such as migration, cell spreading, phagocytosis, cell division, endocytosis, mechano-transduction, and metabolism, to name but a few. Consequently, membrane tension is under constant regulation due to its required dynamicity, and in turn, membrane tension regulates cell growth, development, motility, endocytosis, and metabolism. As the membrane is remodeled during these cellular processes, bending, tearing, and stretching of the membrane is common. These changes in membrane shape and tension occur over time and in different locations around and inside the cell and are important parameters to measure in order to understand how membrane tension is regulated and how it regulates these various basic, essential cellular processes. Understanding how membrane tension regulates cellular physiology is relevant in the study of healthy and diseased cells.

Membrane tension measurements usually relied on low resolution and slow physical methods to determine forces and tension within the plasma membrane. For example, a standard technique for measuring membrane tension involves pulling on membrane tubes from the plasma membrane with a bead trapped in an optical tweezer – a technique fraught with several methodological and technical limitations. For these reasons, novel, sensitive, reliable, and non-invasive research tools capable of rapidly measuring in vivo changes in membrane tension in real-time are in great demand. The fluorescent membrane tension probe Flipper-TR® (Spirochrome, Ltd.) answers these challenges as it has achieved unparalleled membrane tension sensitivity and temporal resolution through the use of FLIM (fluorescence lifetime imaging microscopy) to visualize Flipper-TR® staining of membranes in living cells. Flipper-TR® is a live cell fluorescent membrane tension probe and the first fluorescent membrane tension reporter developed for the field of mechanobiology. The fluorescence lifetime of Flipper-TR® is strongly dependent on the membrane tension. Using FLIM, the precise measurement of the spatio-temporal distribution of tension in membranes is now possible. Flipper-TR® opens up a whole new field by providing a sensitive, reliable, and non-invasive means by which rapid, real-time membrane tension in live cells is measured (Figure 1).

Figure 1 - Flipper-TR sensing membrane tension in cell undergoing hyperosmotic shock.

                                     Flipper-TR sensing changes in cell during hyperosmotic shock

Legend Figure 1: Flipper-TR® staining of cells. Left side: Image of cells stained with Flipper-TR®  before (top) and after (bottom) hyperosmotic shock. Greyscale represents fluorescence intensity, and color codes represent fluorescence lifetime. On the right the histogram shows the lifetime shift after osmotic shock. Images courtesy of Colom et al. 2018 (Ref. 1). Flipper-TR is a registered trademark of UNIGEM, Switzerland.

The fluorescent Flipper-TR® probe works by specifically targeting the plasma membrane of cells and reports membrane tension changes through its fluorescence lifetime changes. It is the most advanced member of the Flipper probes family2,3, which sense changes in the organization of lipid bilayer membranes through changes of the twist angle and polarization between the two twisted dithienothiophenes of the mechanophore. Flipper-TR®spontaneously inserts into the plasma membrane of cells and is only fluorescent when inserted into a lipid membrane. It has a broad absorption and emission spectrum; excitation can be commonly performed with a 488 nm laser, while emission is collected between 575 and 625 nm (Figure 2).

Figure 2 - Absorbance and emission spectra of Flipper-TR

A

 

 

 

 

 

 

 

 

 

Flipper-TR fluorescent membrane probe dye stain mechanism of action

 

B

 

 

 

 

 

 

 

 

 

Absorbance and emission spectra of Flipper-TR

Legend Figure 2 - A. Schematic diagram of the mechanism of Flipper-TR and its interaction with membranes with different tension. On the left, basic molecular structure of Flipper-TR. On the right, low tension green twisted Flipper-TR and on the right high tension planar structure. B. Flipper-TR solution in ethyl acetate was subject to absornace and emission scans and the results plotted on the same graph. Absorbance is dotted orange line, and emission is a solid orange line. 

 

A detailed protocol for staining and FLIM imaging can be found below the References (click here, and Ref.5). Flipper-TR® works on a wide range of organisms including bacteria, mammalians, plants, and yeast1,4 (Figure 3).

 

Figure 3 - Flipper-TR staining in yeast cells

A

 

 

 

Flipper-TR staining in yeast cells
B 

Legend for Figure 3: Flipper-TR® staining in yeast cells. Yeast cells stained with Flipper-TR and treated with either hypo-osmotic choc (left) or hyper-osmotic choc (right). The fluorescence lifetime of Flipper-TR shifts to high or low values depending on the applied conditions. The color codes for fluorescence lifetime. Images courtesy of M. Riggi from Roux group at UNIGE (Ref. 4). Note the large pseudo-color change which is proprotional to the tension in the membrane.

 

Data analysis

The photon histograms from ROI or single pixels are fitted with a double-exponential, and two decay times (τ1 and τ2) are extracted. The longest lifetime with the higher fit amplitude τ1 is used to report membrane tension and varies between 2.8 and 7.0 ns. Longer lifetime means more tension in the membrane. τ2 with a smaller value (between 0.5 and 2 ns) and a small fit amplitude is less suited to study membrane tension. The lifetime can be correlated to absolute membrane tension using the calibration procedure given in Ref. 1 (Colom et al. 2018).

Figure 4 - Schematic diagram of short and long lifetime photon release.
                                                 Schematic representation of different photon lifetimes

Legend Figure 4 - Short lifetime photons represented by the red dashes. Long lifetime photons represented by the blue dashes. Note - these data are not derived from Flipper-TR but represents the effect of two types of fluorescent lifetime decay.

 

References

1. Colom A et al. 2018. A fluorescent membrane tension probe. Nat. Chem. 10, 1118–1125.

2. Dal Molin M. et al. 2015. Fluorescent flippers for mechanosensitive membrane probes. J. Am. Chem. Soc. 137, 568-571.

3. Soleimanpour S. et al. 2016. Headgroup engineering in mechanosensitive membrane probes. Chem. Commun. (Camb). 52, 14450-14453.

4. Riggi M et al. 2018. Decrease in plasma membrane tension triggers PtdIns(4,5)P2 phase separation to inactivate TORC2. Nat. Cell Biol. 20, 1043–1051.

5. FLIM microscopy: Lakowicz JR et al. 1994. Emerging biomedical and advanced applications of time-resolved fluorescence spectroscopy. J Fluoresc. 4(1):117-36. doi: 10.1007/BF01876666. 

 

Protocol 1:  General Labeling Protocol (consult the datasheet and published papers for detailed protocols)

1. Grow cells on coverslips, glass-bottom dishes, or glass-bottom multi-well plates based on standard laboratory cell culture protocols. When cells have reached the desired density, reconstitute Flipper-TR. Optimal labeling conditions for each cell type should be empirically determined.

2. Reconstitute and prepare a 1 mM master stock solution of Flipper-TR. Store as directed on the datasheet.

3. Prepare a working solution from the 1 mM master stock for staining of the cultured cells. Start with 1 μM stain in cell culture medium. Replace the culture medium with the staining solution.

4. Return the cells to the incubator at 37°C in a humidified atmosphere containing 5% COfor 15 minutes before imaging.

5. Image stained cells with standard FLIM techniques using a 485 or 488 nm pulsed laser for excitation and collecting photons through a 600/50 nm bandpass filter. Optimization of the labeling procedure and image acquisition settings is recommended so that photodamage is minimized. NOTE: Membrane tension measurements can only be performed by FLIM (fluorescence intensity or wavelength are not reliable).

 

Data Analysis

For extraction of lifetime information, the photon histograms from ROI or single pixels are fitted with a double-exponential, and two decay times (τ1 and τ2) are extracted. The longest lifetime with the higher fit amplitude τ1 is used to report membrane tension and varies between 2.8 and 7.0 ns. Longer lifetime means more tension in the membrane. τ2 with a smaller value (between 0.5 and 2 ns) and a small fit amplitude is less suited to study membrane tension. The lifetime can be correlated to absolute membrane tension using the calibration procedure given in reference # 1 (Colom et al. 2018).



化工儀器網(wǎng)

采購商登錄
記住賬號    找回密碼
沒有賬號?免費注冊

提示

×

*您想獲取產(chǎn)品的資料:

以上可多選,勾選其他,可自行輸入要求

個人信息:

溫馨提示

該企業(yè)已關閉在線交流功能

人妻丝袜中文字幕在线视频-亚洲成av人片一区二区三区| 亚洲国产欧美日韩不卡-熟妇激情一区二区三区| 亚洲中文一二三av网-亚洲天堂成人免费在线| 狠狠狠狠爱精品一二三四区-l舌熟女av国产精品| 欧美精品午夜一二三区-a屁视频一区二区三区四区| 国产一级片久久免费看同-麻豆精品尤物一区二区青青| 十九禁止观看无码视频-亚洲国产激情福利专区| 午夜精品午夜福利在线-内射无套内射国产精品视频| 日韩精品亚洲不卡一区二区-成人网在线视频精品一区二区三区| 亚洲av专区在线观看国产-丰满人妻av一区二区三区| 婷婷六月视频在线观看-久久亚洲综合国产精品| 欧美一级二级三级在线看-日韩精品欧美嫩草久久99| 欧美看片一区二区三区-人妻无卡精品视频在线| 欧美日韩国产综合四区-爆操极品尤物熟妇14p| 两性污污视频网站在线观看-亚洲欧美日韩激情一区| 人妻互换精品一区二区-夜夜爽一区二区三区视频| 国产成人精品亚洲精品密奴-国产成人AV无码精品| 国产欧美日本一区二区-一区二区三区亚洲在线播放| 免费午夜福利在线观看-黄色日本黄色日本韩国黄色| 看肥婆女人黄色儿逼视频-秋霞电影一区二区三区四区| 国产成人精品免费视频大全办公室-亚洲欧美日本综合在线| 99热在线精品免费6-av一区二区在线观看| 久久99国产综合精品女人-日韩一区二区三区在线不卡| 国产小黄片高清在线观看-涩涩鲁精品亚洲一区二区| 欧美看片一区二区三区-人妻无卡精品视频在线| 91麻豆免费在线视频-欧美中文天堂在线观看| 国产在线观看高清精品-四季av一区二区三区中文字幕| 一级小黄片在线免费看-亚洲欧美午夜情伊人888| 国产欧美日韩中文字幕在线-国产伊人一区二区三区四区| 麻豆久久国产精品亚洲-日本理论中文字幕在线视频| 日韩精品一区二区三区十八-日韩人妻少妇一区二区三区| 国产aa视频一区二区三区-国产精品久久久久久久毛片动漫| 性都花花世界亚洲综合-日韩av一区二区三区| 中文字幕日本在线资源-国产+成+人+亚洲欧洲自线| 蜜臀av日日欢夜夜爽一区-av在线免费永久播放| 亚洲欧洲成视频免费观看-国产福利一区二区在线观看| 中文字幕日韩不卡久久-五月天中文字幕啊av| 亚洲黄片三级三级三级-国产成人一区二区在线视频| 午夜福利1区2区3区-午夜洗澡免费视频网站| 亚洲欧美日韩二区三区-国产在线欧美一区日韩二区| 深夜三级福利在线播放-日韩精品一区二区在线天天狠天|