當(dāng)前位置:復(fù)納科學(xué)儀器(上海)有限公司>>技術(shù)文章>>全自動掃描電鏡成像分析在優(yōu)化電池正極材料質(zhì)量管理中的應(yīng)用
全自動掃描電鏡成像分析在優(yōu)化電池正極材料質(zhì)量管理中的應(yīng)用
全自動掃描電鏡成像分析在優(yōu)化電池正極材料質(zhì)量管理中的應(yīng)用
電動汽車電池組由數(shù)千個單獨的電池組成,這些電池的每個電極都包含著數(shù)百萬個顆粒。 在充電和放電過程中,重要的是這些顆粒要一同發(fā)揮作用。
正極材料及其前驅(qū)體的粒徑分布和微觀結(jié)構(gòu)對電池的能量密度和安全性至關(guān)重要,這就意味著,在生產(chǎn)過程中需要嚴格監(jiān)控這些顆粒的質(zhì)量。掃描電子顯微鏡(SEM)用于制造過程質(zhì)量控制,能夠識別原材料及其中間產(chǎn)物的質(zhì)量波動。掃描電鏡(SEM)能夠提供直觀全面的形態(tài)統(tǒng)計結(jié)果,在正極顆粒的質(zhì)量控制過程中發(fā)揮著重要作用。
在本文中,對 NCM 正極及其前驅(qū)體使用了自動化掃描電鏡(SEM)的檢測方法,向研究人員展示了該方法是如何幫助正極材料生產(chǎn)商優(yōu)化其質(zhì)量檢查(QC)工序的。這一自動化的解決方案有望通過提高工廠生產(chǎn)力,并節(jié)省大量成本。
圖1. 含鎳正極材料的制造工藝示意圖
SEM 在正極材料 QC 工序中的應(yīng)用案例
圖 1 顯示了 NCM 正極粉末的生產(chǎn)過程。NCM 正極材料是將鋰鹽與前驅(qū)體混合后燒結(jié)(通常通過水熱法和共沉淀法制備),燒結(jié)后,再將團聚的顆粒研磨粉碎成需要的粒徑。
NCM 正極前驅(qū)體顆粒的質(zhì)量控制
NCM 顆粒的最終形態(tài)和粒徑取決于其前驅(qū)體顆粒的粒徑以及燒結(jié)的過程,這就意味著在前驅(qū)體生產(chǎn)過程中控制前驅(qū)體的質(zhì)量至關(guān)重要。質(zhì)檢人員在前驅(qū)體質(zhì)量控制過程中測定兩個主要的結(jié)構(gòu)特征:尺寸分布和表面結(jié)構(gòu)。通常,具有窄粒徑分布的前驅(qū)體可以在更短的時間內(nèi)鋰化,從而獲得更好的結(jié)晶度。窄的粒徑分布和良好的層結(jié)構(gòu)也代表著更好的電化學(xué)性能。圖 2 顯示了通過不同合成工藝生產(chǎn)的前驅(qū)體顆粒的 SEM 圖。如圖 2a 所示,具有寬粒徑分布的前驅(qū)體顆粒直徑范圍約 4.5~13.6µm。圖 2b 顯示了窄粒徑分布且具有多孔表面結(jié)構(gòu)的前驅(qū)體顆粒。(圖中測量粒徑尺寸和分布的軟件為 Phenom ParticleMetric )
圖2. 不同的合成條件下的 NCM 前驅(qū)體 a)具有寬粒徑粒徑分布的前驅(qū)體顆粒b)具有窄粒徑分布和多孔結(jié)構(gòu)的前驅(qū)體顆粒
NCM 正極材料的質(zhì)量控制
一次和二次顆粒特性的表征在 NCM 正極材料質(zhì)量控制過程中發(fā)揮著重要作用。如圖 3 所示,NCM 正極顆粒通常由許多一次晶體顆粒組成為球狀多晶顆粒(稱為二次顆粒)。
圖3. 具有不同一次晶體顆粒尺寸的多晶 NCM 顆粒
在進行充電和放電時,每個一次晶體顆粒經(jīng)歷鋰離子的嵌入和脫嵌入時,正極材料會發(fā)生二次顆粒破裂。在這個過程中,每個一次晶體顆粒的體積都會發(fā)生變化,這是造成顆粒裂開的主要原因。二次顆粒破裂加劇了電池內(nèi)部反應(yīng),并縮短了電池的壽命周期。因此,一次晶體顆粒的表征對于整個 NCM 材料分析至關(guān)重要。
圖4. 由 Phenom ParticleMetric 軟件測量的多晶 NCM 顆粒,顯示分布著大量的二次顆粒
圖 4 顯示了具有寬的二次粒徑分布的 NCM 顆粒,這導(dǎo)致了較低的能量密度??偟膩碚f,確保前驅(qū)體的粒徑大小在預(yù)期值內(nèi),能夠提高最終正極粉末符合規(guī)范的可能性。同時,不符合質(zhì)量控制標準的前驅(qū)體顆??梢曰厥赵偌庸?,從而降低制造成本。SEM 可以提供一次和二次顆粒粒徑的信息,能夠幫助制造商在燒結(jié)過程中優(yōu)化關(guān)鍵參數(shù)。
燒結(jié)后,將團聚的顆粒粉碎并研磨成單個顆粒。圖 5a 顯示了顆粒分散度不足的案例,而圖 5b 則顯示了過度分離導(dǎo)致顆粒破碎的案例。圖 5c 則展示了顆粒高度團聚的案例,此情況是制造單晶正極材料時燒結(jié)溫度過高的結(jié)果。這種團聚使顆粒比多晶材料更難分散。缺乏均勻性、分散不足或過度破碎都會對顆粒的電化學(xué)性能產(chǎn)生負面影響。掃描電鏡(SEM)可以清晰地顯示研磨后的顆粒,有助于生產(chǎn)尺寸均勻的顆粒并優(yōu)化該生產(chǎn)過程。
圖5. a)團聚的多晶顆粒 b)過度分離的顆粒 c)高度團聚的單晶顆粒
掃描電鏡(SEM)應(yīng)用于 QC 工序中
傳統(tǒng)的掃描電鏡(SEM)用于 QC,需要檢查一個樣品中的多個位置,以確保結(jié)果具有普遍性。通常,需要不同放大倍數(shù)的掃描電鏡(SEM)圖像,高倍掃描電鏡(SEM)圖像顯示詳細的微觀結(jié)構(gòu)(例如,前驅(qū)體中的層狀結(jié)構(gòu)、一次晶體顆粒),而低倍掃描電鏡(SEM)圖像顯示了整體顆粒特征(例如,尺寸、分布、圓度等)。獲取這些多幅圖像需要進行以下操作:
1. 加載樣本
2. 導(dǎo)航到所需位置
3. 調(diào)整焦點、亮度、對比度等。
4. 獲取不同放大倍數(shù)的圖像
5. 根據(jù)需要重復(fù)步驟 2 - 4
每日生產(chǎn)數(shù)噸材料的制造廠可能每天需要測試數(shù)百個樣品。這意味著檢測人員需要連續(xù)數(shù)小時重復(fù)單調(diào)的操作,這樣很容易出現(xiàn)人為錯誤。
圖6. 傳統(tǒng)的掃描電鏡(SEM)成像工作流程與 Phenom XL 臺式 SEM 的自動成像工作流程對比
自動成像的工作流
飛納電鏡 Phenom XL G2 提供了自動成像工作流,AutoScan 軟件可以在加載樣品后自動獲取數(shù)據(jù)。該設(shè)備一次最多可容納 36 個樣品,每個樣品能夠在不同的位置以不同的放大倍數(shù)成像。整個過程可以輕松實現(xiàn)定制化工作流程。
例如,正極原材料的標準質(zhì)量控制可能需要對每個樣品上的 5 個不同位置進行 1k、5k 和 10k 的放大倍數(shù)分析,并且要求對樣品的微觀結(jié)構(gòu)進行清晰成像。手動操作 36 個樣品,這將需要操作人員重復(fù)數(shù)百次圖 6 所示的步驟,大約花費 3-4 小時才能完成。而 Phenom XL G2 自動化的工作流程只需要用戶花費 10 分鐘進行輸入設(shè)置參數(shù)即可,這樣可以為其他工作騰出寶貴的時間??梢栽跓o人值守的情況下自動穩(wěn)定運行,提高了檢測效率,從而達到減小誤差,提高生產(chǎn)率的效果。
基于 AutoScan 軟件的自動化成像
AutoScan 軟件基于Phenom 編程接口(PPI)。使用 AutoScan 軟件,飛納電鏡可以根據(jù)用戶的指令,對每個樣品的不同位置以及不同位置下的多個放大倍數(shù)進行自動拍照成像。
圖7. AutoScan 軟件用戶界面
該自動化程序可以每周七天、每天 24 小時運行。自動化的程序也提高了 Phenom 臺式掃描電鏡的可操作性,可以獲取海量數(shù)據(jù),為他們的分析提供可靠的數(shù)據(jù)基礎(chǔ)。
進一步提升圖像分析能力的軟件 ParticleMetric 飛納顆粒統(tǒng)計分析軟件
為了進一步進行自動化粒徑分析,可以將圖像直接導(dǎo)入 Phenom ParticleMetric 軟件,該軟件可以自動分析圖像并計算統(tǒng)計顆粒形態(tài)信息。分析完成后立即生成報告,包括各種顆粒性質(zhì)和統(tǒng)計數(shù)據(jù)。
圖 8 顯示了單晶 NCM 樣品的 ParticleMetric 軟件分析界面。自動粒徑分布表明平均粒徑為 2µm。
圖8. 使用 Phenom ParticleMetric 軟件對單晶 NCM 樣品分析的用戶界面。
A)使用的所有圖像的列表項目
B)已識別的顆粒進行著色
C)已識別顆粒的詳細信息列表
D)所有顆粒的統(tǒng)計信息
E)可視化數(shù)據(jù)均可以進行自定義
總結(jié)
在本文中,介紹了掃描電鏡(SEM)在正極材料質(zhì)量控制中的作用。Phenom XL G2 臺式電鏡提供的自動化成像工作流,能夠進行自動圖像采集和分析,優(yōu)化質(zhì)量控制過程,從而降低生產(chǎn)成本并提高生產(chǎn)效率。
· 飛納電鏡 Phenom XL G2 與 AutoScan 軟件相結(jié)合,可以自動獲取海量 SEM 圖像
· 在 ParticleMetric 軟件中對 SEM 圖像進行分析,實現(xiàn)關(guān)鍵顆粒信息的可視化
· 自動化 SEM 成像工作流程同樣可以應(yīng)用于電池生產(chǎn)中使用的其他原材料的質(zhì)量控制
AutoScan 軟件和 ParticleMetric 軟件,從原材料的顆粒形態(tài)出發(fā),為電池原材料生產(chǎn)商解決了海量拍照和顆粒統(tǒng)計的煩惱。但是,原材料或者生產(chǎn)過程中引入的雜質(zhì),同樣嚴重影響電池的電化學(xué)性能,正、負極雜質(zhì)顆粒都有可能刺穿隔膜,造成安全隱患。因此,對于原材料或者生產(chǎn)過程中的異物監(jiān)控也是品控中的重要課題,在下期文章中,我們將重點介紹電池異物檢測的解決方案 —— Phenom ParticleX 鋰電清潔度檢測系統(tǒng)。
參考文獻 Reference
1. Xu, Zhongling et al.“Effects of precursor, synthesis time and synthesis temperature on the physical and electrochemical properties of Li(Ni1?x?yCoxMny)O2cathode materials."Journal of Power Sources 248, 180-189 (2014)
2. Hietaniemi, Marianna et al.“Effect of precursor particle size and morphology on lithiation of Ni0.6Mn0.2Co0.2(OH)2."Journal of AppliedElectrochemistry 51:11, 1545-1557 (2021)
3. Langdon, Jayse, and Arumugam Manthiram.“A perspective on single-crystal layered oxide cathodes for lithium-ion batteries."Energy StorageMaterials 37, 143-160 (2021)