pam-2500——pam-2100的升級版
野外光合作用研究的*儀器
schreiber教授因發(fā)明pam系列調(diào)制葉綠素?zé)晒鈨x而獲得首屆光合作用協(xié)會(ispr)創(chuàng)新獎
1983年,walz公司*科學(xué)家、德國烏茲堡大學(xué)的ulrich schreiber教授設(shè)計制造了**臺調(diào)制熒光儀——pam-101/102/103,使在自然光下測量葉綠素?zé)晒獬蔀楝F(xiàn)實(shí),解決了科學(xué)界近50年的技術(shù)瓶頸。pam-101/102/103迅速在植物生理、生態(tài)、農(nóng)學(xué)、林學(xué)、水生生物學(xué)等領(lǐng)域得到廣泛應(yīng)用,出版了大量高水平研究文獻(xiàn)。但該儀器比較笨重,不易帶到野外。
1992年,walz公司*科學(xué)家、調(diào)制熒光儀發(fā)明人、德國烏茲堡大學(xué)的ulrich schreiber教授設(shè)計制造了**臺便攜式調(diào)制熒光儀——pam-2000,并且在植物生理生態(tài)學(xué)等科研領(lǐng)域得到廣泛應(yīng)用,此后十幾年中成為zui的調(diào)制熒光儀。
2003年,walz公司在保留pam-2000所有功能和優(yōu)點(diǎn)的基礎(chǔ)上,結(jié)合技術(shù),將pam-2000升級到了pam-2100。
2008年,walz公司在保留pam-2100所有功能和優(yōu)點(diǎn)的基礎(chǔ)上,結(jié)合的超便攜個人電腦(umpc)技術(shù),將pam-2100升級到了*基于umpc電腦windows系統(tǒng)的pam-2500。
系統(tǒng)描述 pam-2500采用了*的調(diào)制技術(shù)和飽和脈沖技術(shù),從而可以通過選擇性的原位測量葉綠素?zé)晒鈦頇z測植物光合作用的變化。pam-2500的調(diào)制測量光足夠低,可以只激發(fā)色素的本底熒光而不引起任何的光合作用,從而可以真實(shí)的記錄基礎(chǔ)熒光fo。pam-2500具有很強(qiáng)的靈敏度和選擇性,使其即使在很強(qiáng)的、未經(jīng)濾光片處理的環(huán)境下(如全日照甚至是10000 μmol m-2 s-1的飽和光強(qiáng)下)也可測定熒光產(chǎn)量而不受到干擾。因此,pam-2500不但適合在實(shí)驗(yàn)室人工控制的環(huán)境下測量,還可以在自然環(huán)境中甚至是強(qiáng)烈的全光照條件下開展野外科學(xué)研究。
pam-2500不僅可以連接電腦通過windows xp sp2系統(tǒng)或vista系統(tǒng)操作,還可連接umpc通過windows xp tablet pc edition來操作。umpc帶60g硬盤,1g內(nèi)存,功能堪比筆記本電腦。
pam-2500除了標(biāo)準(zhǔn)的葉綠素?zé)晒鉁y量所需配置外,還額外增加了單周轉(zhuǎn)飽和閃光(st)和多周轉(zhuǎn)飽和閃光(mt),為將來升級p700測量功能埋下了伏筆。
特點(diǎn)
* 聲譽(yù)*的pam-2100的升級版
* 精巧、準(zhǔn)確、迅速、操作簡便的高級光合作用檢測設(shè)備
* 利用強(qiáng)大的umpc電腦進(jìn)行操作,*基于windows操作系統(tǒng),界面友好
* 利用*發(fā)光二極管(led)提供光化光和飽和脈沖,不再使用散熱量大的鹵素?zé)?br> * 強(qiáng)大的數(shù)據(jù)收集、分析和存貯功能
* 內(nèi)置鋰電池可滿足長時間野外工作需要,并可連接外置12 v電池
* 多種葉夾可供選擇,設(shè)計的光適應(yīng)葉夾2030-b可同時記錄par和溫度變化
* 60 g硬盤,無*存儲
功能
* 可測熒光誘導(dǎo)曲線的快速上升動力學(xué)o-i-d-p相和o-j-i-p相
* 可測熒光誘導(dǎo)曲線的慢速下降動力學(xué)并進(jìn)行淬滅分析(fo、fm、f、fo’、fm’、fv/fm、y(ii)= δf/fm’、ql、qp、qn、npq、y(npq)、y(no)、etr、c/fo、par和葉溫等)
* 可測光響應(yīng)曲線和快速光曲線(rlc)
* 可在線檢測植物、微藻、地衣、苔蘚等的光合作用變化
* 操作功能強(qiáng)大,特別適合野外操作,野外操作也使用windows系統(tǒng)
應(yīng)用領(lǐng)域
儀器設(shè)計特別適合野外使用,可用于研究光合作用機(jī)理、各種環(huán)境因子(光、溫、營養(yǎng)等)對植物生理狀態(tài)的影響、植物抗逆性(干旱、冷、熱、澇、uv、病毒、污染、重金屬等)、植物的長期生態(tài)學(xué)變化等。在植物生理學(xué)、植物生態(tài)學(xué)、植物病理學(xué)、農(nóng)學(xué)、林學(xué)、園藝學(xué)、水生生物學(xué)、環(huán)境科學(xué)、毒理學(xué)、微藻生物技術(shù)、極地植物光合作用研究等領(lǐng)域有著廣泛應(yīng)用。
主要技術(shù)參數(shù)
* 測量光:紅色led,630 cnm,fwhm 20 nm;調(diào)制頻率測量fo時5-5000 hz可選,打開光化光時1-100 khz可選,測量熒光誘導(dǎo)動力學(xué)的快相時200 khz;20級可調(diào)。
* 光化光源:
藍(lán)色光化光:led,455 nm,fwhm 20 nm,光強(qiáng)范圍0-800 μmol m-2 s-1 par,20級可調(diào)。
紅色光化光:led,630 nm,fwhm 15 nm,光強(qiáng)范圍0-5000 μmol m-2 s-1 par,20級可調(diào)。
* 飽和脈沖:紅色led,630 nm,fwhm 15 nm,zui大par 25 000 μmol m-2 s-1,持續(xù)時間0.1-0.8 s可調(diào),光強(qiáng)20級可調(diào)。
* 遠(yuǎn)紅光:led,750 nm,fwhm 25 nm,20級可調(diào)。
* 單周轉(zhuǎn)飽和閃光:紅色led,630 nm,fwhm 15 nm,zui大par 125 000 μmol m-2 s-1,持續(xù)時間5-50 s可調(diào)。
* 多周轉(zhuǎn)飽和閃光:紅色led,630 nm,fwhm 15 nm,zui大par 25 000 μmol m-2 s-1,持續(xù)時間1-300 ms可調(diào),光強(qiáng)20級可調(diào)。
* 信號檢測:pin-光電二極管,帶長通濾光片(t(50%)=715 nm),帶選擇性鎖相放大器。
* 測量參數(shù):fo、fm、f、fo’、fm’、fv/fm、y(ii)= δf/fm’、ql、qp、qn、npq、y(npq)、y(no)、etr、c/fo、par和葉溫等。
* 耗電:基礎(chǔ)操作1.6 w,內(nèi)置光源(測量光、紅色和藍(lán)色光化光、遠(yuǎn)紅光)為zui大輸出時8 w,飽和脈沖zui大輸出時37 w。
* 充電時間:關(guān)機(jī)狀態(tài)下約需6 h。
* 微型光量子傳感器:測量光合有效輻射(par),測量范圍0~20000 μmol m-2 s-1 par
* 熱電耦(溫度傳感器):ni-crni,直徑0.1 mm,測量范圍20~+60℃
* 數(shù)據(jù)通訊:usb;藍(lán)牙v2.0+edr class 2
* 操作系統(tǒng): windows xp tablet pc edition,windows xp sp2或vista
* 超移動個人電腦(umpc)參數(shù)
型號:三星q1 ultra觸摸屏umpc
處理器:in a110 800mhz ulv
緩存:512 kb
內(nèi)存:1g的ddr ii內(nèi)存
硬盤:60 g,4200 rpm
顯示器:7英寸wsvga觸摸屏顯示器,1024 x 600像素
圖形卡:in gma950,zui大128 m共享內(nèi)存
通訊方式:usb 2.0(兩個);有線lan;無線lan(802.11b/g);藍(lán)牙2.0+edr
讀卡插槽:sd/mmc
電池:兩塊鋰電池,一塊為7.4 v/4 ah,可工作3.5 h,另一塊為7.4 v/7.8 ah,可工作6 h
供電:100-240 v ac,50-60 hz
部分文獻(xiàn)(pam-2000/pam-2100/pam-2500)
1. yin cy, berninger f, li cy, 2006. photosynthetic responses of populus przewalski subjected to drought stress photosynthetica 44: 62-68.
2. yaronskaya e, vershilovskaya i, poers y, alawady ae, averina n, grimm2 b, 2006. cytokinin effects on tetrapyrrole biosynthesis and photosynthetic activity in barley seedlings. planta: in press.
3. yang y, sulpice r, himmelbach a, meinhard m, christmann a, grill e, 2006. fibrillin expression is regulated by abscisic acid response regulators and is involved in abscisic acid-mediated photoprotection proc. natl. acad. sci. usa 103: 6061-6066.
4. veres s, tóth vr, láposi r, oláh v, lakatos g, mészáros i, 2006. carotenoid composition and photochemical activity of four sandy grassland species. photosynthetica 44: 255-261.
5. subrahmanyam d, subash n, haris a, sikka ak, 2006. influence of water stress on leaf photosynthetic characteristics in wheat c*rs differing in their susceptibility to drought photosynthetica 44: 125-129.
6. rautenberger r, bischof k, 2006. impact of temperature on uv-susceptibility of two ulva (chlorophyta) species from antarctic and subantarctic regions. polar biology: in press.
7. naidoo g, 2006. factors contributing to dwarfing in the mangrove avicennia marina. annals of botany 97: 1095-1101.
8. lizana c, wentworth m, martinez jp, villegas d, meneses r, murchie eh, pastenes c, lercari b, vernieri p, horton p, pinto m, 2006. differential adaptation of two varieties of common bean to abiotic stress: i. effects of drought on yield and photosynthesis. journal of experimental botany 57: 685-697.
9. häubner n, schumann, karsten u, 2006. aeroterrestrial microalgae growing in biofilms on facades—response to temperature and water stress. microbial ecology: in press.
10. bertamini m, muthuchelian k, nedunchezhian n, 2006. shade effect alters leaf pigments and photosynthetic responses in norway spruce (picea abies l.) grown under field conditions. photosynthetica 44: 227-234.
11. yang x, lu c, 2005. photosynthesis is improved by exogenous glycinebetaine in salt-stressed maize plants. physiologia plantarum 124: 343-352.
12. wodala b, deák z, vass i, erdei l, horváth f, 2005. nitric oxide modifies photosynthetic electron transport in pea leaves. acta biologica szegediensis 49: 7-8.
13. wen x, qiu n, lu q, lu c, 2005. enhanced thermotolerance of photosystem ii in salt-adapted plants of the halophyte artemisia anethifolia. planta 220: 486-497.
14. wen x, gong h, lu c, 2005. heat stress induces an inhibition of excitation energy transfer from phycobilisomes to photosystem ii but not to photosystem i in a cyanobacterium spirulina platensis. plant physiology and biochemistry 43: 389–395.
15. wen x, gong h, lu c, 2005. heat stress induces a reversible inhibition of electron transport at the acceptor side of photosystem ii in a cyanobacterium spirulina platensis. plant science 168: 1471–1476.
16. tang y, wen x, lu c, 2005. differential changes in degradation of chlorophyll–protein complexes of photosystem i and photosystem ii during flag leaf senescence of rice. plant physiology and biochemistry 43: 193-201.
17. takabayashi a, kishine m, asada k, endo t, sato f, 2005. differential use of two cyclic electron flows around photosystem i for driving co2-concentration mechanism in c4 photosynthesis. proc. natl. acad. sci. usa 102: 16898-16903.
18. souza gm, ribeiro rv, de oliveira rf, machado ec, 2005. network connectance and autonomy analyses of the photosynthetic apparatus in tropical tree species from different successional groups under contrasting irradiance conditions. revista brasileira de botanica 28: 47-59.
19. siffel p, santrucek j, 2005. diurnal course of photochemical activity of winter-adapted scots pine at subzero temperatures photosynthetica 43: 395-402.
20. shirke pa, pathre uv, 2005. influence of leaf-to-air vapour pressure deficit (vpd) on the biochemistry and physiology of photosynthesis in prosopis juliflora. journal of experimental botany 55: 2111-2120.
21. rassadina vv, usatov av, fedorenko gm, averina ng, 2005. activity of the system for chlorophyll biosynthesis and structural and functional organization of chloroplasts in a plastome en:chlorina-5 sunflower mutant russian journal of plant physiology 52: 606-615.
22. pérez-priego o, zarco-tejada pj, miller jr, sepulcre-cantó g, fereres e, 2005. detection of water stress in orchard trees with a high-resolution spectrometer through chlorophyll fluorescence in-filling of the o2-a band. ieee transactions on geoscience and remote sensing 43: 2860-2869.
23. penuelas j, llusia j, asensio d, munne-bosch s, 2005. linking isoprene with plant thermotolerance, antioxidants and monoterpene emissions. plant cell and environment 28: 278-286.
24. kosourov s, makarova v, fedorov as, tsygankov a, seibert m, ghirardi ml, 2005. the effect of sulfur re-addition on h2 photoproduction by sulfur-deprived green algae. photosynthesis research 85: 295-305.
25. jeon m-w, ali mb, hahn e-j, paek k-y, 2005. effects of photon flux density on the morphology, photosynthesis and growth of a cam orchid, doritaenopsis during post-micropropagation acclimatization. plant growth regulation 45: 139-147.
26. ifuku k, yamamoto y, ono t-a, ishihara s, sato f, 2005. psbp protein, but not psbq protein, is essential for the regulation and stabilization of photosystem ii in higher plants. plant physiology 139: 1175–1184.
27. havaux m, eymery f, porfirova s, rey p, dormann p, 2005. vitamin e protects against photoinhibition stress in arabidopsis thaliana. the plant cell 17: 3451-3469.
28. guéra a, calatayud a, sabater b, barreno e, 2005. involvement of the thylakoidal nadh-plastoquinone-oxidoreductase complex in the early responses to ozone exposure of barley (hordeum vulgare l.) seedlings journal of experimental botany 56: 205-218.
29. feild ts, sage tl, czerniak c, iles wjd, 2005. hydathodal leaf teeth of chloranthus japonicus (chloranthaceae) prevent guttation-induced flooding of the mesophyll. plant cell and environment 28: 1179-1190.
30. feild ts, brodribb tj, 2005. a unique mode of parasitism in the conifer coral tree parasitaxus ustus (podocarpaceae). plant cell and environment 28: 1316-1325.
31. favory j-j, kobayshi m, tanaka k, peltier g, kreis m, valay j-g, lerbs-mache s, 2005. specific function of a plastid sigma factor for ndhf gene transc-ription. nucleic acid research 33: 5991-5999.
32. bigras fj, 2005. photosynthetic response of white spruce families to drought stress. new forests 29: 135-148.
33. bertamini m, muthuchelian k, rubinigg m, zorer r, nedunchezhian n, 2005. photoinhibition of photosynthesis in leaves of grapevine (vitis vinifera l. cv. riesling). effect of chilling nights photosynthetica 43: 551-557.
34. xu z-z, zhou g-s, li h, 2004. response of chlorophyll fluorescence and nitrogen level of leymus chinensis seedling tho changes of soil moisture and temperature. journal of environmental sciences 16: 666-669.
35. wilson s, blake c, berges ja, maggs ca, 2004. environmental tolerances of free-living coralline algae (maerl): implications for european marine conservation. biological conservation 120: 283-293.
36. sjögren lle, macdonald tm, sutinen s, clarke ak, 2004. inactivation of the clpc1 gene encoding a chloroplast hsp100 molecular chaperone causes growth retardation, leaf chlorosis, lower photosynthetic activity, and a specific reduction in photosystem content. plant physiology 136: 4114-4126.
37. salvucci me, crafts-brandner sj, 2004. relationship between the heat tolerance of photosynthesis and the thermal stability of rubisco activase in plants from contrasting thermal environments. plant physiology 134: 1460-1470.
38. romero hm, berlett bs, jensen pj, pell ej, tien m, 2004. investigations into the role of the plastidial peptide methionine sulfoxide reductase in response to oxidative stress in arabidopsis. plant physiology 136: 3784-3794.
39. munné-bosch s, peñuelas j, asensio d, llusià j, 2004. airborne ethylene may alter antioxidant protection and reduce tolerance of holm oak to heat and drought stress. plant physiology 136: 2937-2947.
40. mcelrone aj, forseth in, 2004. photosynthetic responses of a temperate liana to xylella fastidiosa infection and water stress. journal of phytopathology 152: 9-20.
41. lu q, lu c, 2004. photosynthetic pigment composition and photosystem ii photochemistry of wheat ears. plant physiology and biochemistry 42: 395-402.
42. larbi a, abadía a, morales f, abadía j, 2004. fe resupply to fe-deficient sugar beet plants leads to rapid changes in the violaxanthin cycle and other photosynthetic characteristics without significant de novo chlorophyll synthesis. photosynthesis research 79: 59-69.
43. ji b-h, zhu s-q, jiao d-m, 2004. a limited photosynthetic c4-microcycle and its physiological function in transgenic rice plant expressing the maize pepc gene. acta botanica sinica 46: 542-551.
44. havaux m, dall"osto l, cuiné s, giuliano g, bassi r, 2004. the effect of zeaxanthin as the only xanthophyll on the structure and function of the photosynthetic apparatus in arabidopsis thaliana. the journal of biological chemistry 279: 13878-13888.
45. fujibe t, saji h, arakawa k, yabe n, takeuchi y, yamamoto kt, 2004. a methyl viologen-resistant mutant of arabidopsis, which is allelic to ozone-sensitive rcd1, is tolerant to supplemental ultraviolet-b irradiation. plant physiology 134: 275-285.
46. ensminger i, sveshnikov d, campbell da, funk c, jansson s, lloyd j, shibistova o, öquist g, 2004. intermittent low temperatures constrain spring recovery of photosynthesis in boreal scots pine forests. global change biology 10: 1-14.
47. d"haese d, vandermeiren k, caubergs rj, guisez y, temmerman ld, horemans n, 2004. non-photochemical quenching kinetics during the dark to light transition in relation to the formation of antheraxanthin and zeaxanthin. journal of theoretical biology 227: 175-186.
48. biemelt s, tschiersch h, sonnewald u, 2004. impact of altered gibberellin metabolism on biomass accumulation, lignin biosynthesis, and photosynthesis in transgenic tobacco plants. plant physiology 135: 254-265.