欧美……一区二区三区,欧美日韩亚洲另类视频,亚洲国产欧美日韩中字,日本一区二区三区dvd视频在线

產(chǎn)品推薦:氣相|液相|光譜|質(zhì)譜|電化學(xué)|元素分析|水分測(cè)定儀|樣品前處理|試驗(yàn)機(jī)|培養(yǎng)箱


化工儀器網(wǎng)>技術(shù)中心>其他文章>正文

歡迎聯(lián)系我

有什么可以幫您? 在線咨詢

使用塑料混合非球面透鏡的優(yōu)點(diǎn)

來(lái)源:江陰韻翔光電技術(shù)有限公司   2017年07月24日 14:46  

Advantages of Using Plastic Hybrid Aspheric Lenses

TECHSPEC® Plastic Hybrid Aspheric Lenses are low cost optical components that lack both spherical and chromatic aberrations. These aspheric lenses provide optical designers with unique, single element solutions for achieving diffraction-limited focusing performance at high numerical apertures with broadband light sources. These aspheric lenses consist of a diffractive surface that has been added to a molded aspheric lens. The aspheric lens eliminates all spherical aberration, while the diffractive surface has a net effect of introducing negative dispersion – when properly tuned to the refractive index and wavelength design of the lens, chromatic aberration is eliminated as well.

 

Spherical and Chromatic Aberrations

There are two major forms of axial optical aberrations inherent in common optical lenses: spherical aberration and chromatic aberration. Spherical aberration is an inherent characteristic of any lens whose surface is a section of a sphere. Light originating from the same object point comes to a focus at slightly different points (P and P’), depending on whether the rays pass through the center of the lens or the periphery (Figure 1).

Figure 1: Spherical Aberration in a Single Positive Lens

 

igure 2.1: Transverse Chromatic Aberration of a Single Positive Lens

 

Figure 2.2: Longitudinal Chromatic Aberration of a Single Positive Lens

 

Chromatic aberration results from material dispersion. Because different colors of light refract by different amounts, an image point formed by light of one color does not coincide with the corresponding image point formed by light of a different color (Figures 2.1 and 2.2).

 

Important Equations

Spherical aberration is typically eliminated by substituting an aspherical surface for the more common spherical surface. The surface profile (sag) is given by Equation 1:

Where

Z = sag of surface parallel to the optical axis

s = radial distance from the optical axis

C = curvature, inverse of radius

k = conic constant

A4, A6, A8 = 4th, 6th, 8th… order aspheric terms

 

However, this does not correct chromatic aberration. Therefore, for a monochromatic light source, the aspheric surface will provide diffraction limited focusing at a single wavelength, but will suffer a large spot size over a broader wavelength.

 

A diffractive surface will correct the spherical aberration, as shown in Equation 2.

Where
Y = radial position from center of lens (for instance, if 0 is the center of the lens, 12.5mm will be the edge of a 25mm diameter lens, etc.)
nd = index of refraction of the material at 587.6nm
Step Height = λ/nd-1
λ = the wavelength of interest

By combining the two features onto a single element, a component that eliminates both chromatic and spherical aberration is created. That surface is described simply as the sum of the Zasph and Zdiff coefficients.

For tips on modeling diffractives in Zemax and Code V, visit the Optics Realm blog.

 

Customer Benefits

Optical designers often need to focus light at very short distances, or collect and collimate as much light as possible from very divergent light sources. Basic optical principles dictate that a high numerical aperture optical lens is required for either of these scenarios. A high numerical aperture optical lens will typically have a focal length equal to or shorter than the clear aperture of the optical system, allowing the designer to maintain as compact of an optical train as possible.

For example, an optical designer has multiple options for achieving a focal length that is equal to his clear aperture (a scenario known as an F/1 lens, or a lens with a numerical aperture of 0.50). The simplest option is to use a standard plano-convex lens, available from a number of distributors. Spot diagram, chromatic focal shift graph, polychromatic diffraction MTF, and transverse ray fan plot for the wavelength range of 486 - 656nm are provided for #45-097 25mm Diameter x 25mm FL PCX lens.

 

PCX Lens

Figure 3.1: Spot Diagram for #45-097 25mm Dia. x 25mm FL PCX Lens

Figure 3.2: Chromatic Focal Shift Graph for #45-097 25mm Dia. x 25mm FL PCX Lens

Figure 3.3: Polychromatic Diffraction MTF Graph for #45-097 25mm Dia. x 25mm FL PCX Lens

Figure 3.4: Transverse Ray Fan Plot for #45-097 25mm Dia. x 25mm FL PCX Lens

 

For improved performance, the optical designer could consider an achromatic lens of the same form factor, for example #65-553 25mm Diameter x 25mm Focal Length Achromatic Lens. Again, the same characteristics are shown over the same wavelength range. A 74% decrease in spot size with a 73% decrease in chromatic focal shift can be seen, yielding an MTF of 13 lp/mm at 40% contrast, a substantial gain versus the aforementioned singlet lens.

Figure 4.1: pot Diagram for #65-553 25mm Dia. x 25mm FL Achromatic Lens

Figure 4.2: Chromatic Focal Shift Graph for #65-553 25mm Dia. x 25mm FL Achromatic Lens

Figure 4.3: Polychromatic Diffraction MTF Graph for #65-553 25mm Dia. x 25mm FL Achromatic Lens

Figure 4.4: Transverse Ray Fan Plot for #65-553 25mm Dia. x 25mm FL Achromatic Lens

For maximum performance, the optical designer should choose a plastic hybrid aspheric lens. In this scenario, the exact same form factor and wavelength range are used, this time with #65-992 25mm Diameter x 25mm FL Hybrid Aspheric Lens. As shown, this lens provides diffraction limited focusing performance, yielding the optimum performance for the designer.

 

Plastic Hybrid Lens

Figure 5.1: Spot Diagram for #65-992 25mm Dia. x 25mm FL Hybrid Aspheric Lens

Figure 5.2: Chromatic Focal Shift Graph for #65-992 25mm Dia. x 25mm FL Hybrid Aspheric Lens

Figure 5.3: Polychromatic Diffraction MTF Graph for #65-992 25mm Dia. x 25mm FL Hybrid Aspheric Lens

Figure 5.4: Transverse Ray Fan Plot for #65-992 25mm Dia. x 25mm FL Hybrid Aspheric Lens

Comparing the spot diagrams, chromatic focal shift graphs, polychromatic diffraction MTFs, and transverse ray fan plots of a plano-convex (PCX) lens, achromatic lens, and hybrid aspheric lens, it is easy to see the advantages of using plastic hybrid aspheric lenses for achieving diffraction-limited focusing performance at high numerical apertures with broadband light sources.

 

Selection Guide

Edmund Optics® TECHSPEC® Plastic Aspheres and TECHSPEC® Plastic Hybrid Aspheres families are both manufactured utilizing Zeon Chemical’s Zeonex E48R material. Zeonex materials feature high transparency, low fluorescence, low birefrengence, low water absorption, and high heat and chemical resistance, making it a superior material vs. other commonly available plastics. Zeonex is a Cylco Olefin Polymer (COP) material.

Plastic Materials Selection Guide

Property

Glass

Zeonex E48R

PMMA

Polycarbonate

Polystyrene

Arton®

Transmission

Excellent

Excellent

Excellent

Good

Very Good

Excellent

Low Refractive Index

Excellent

Excellent

Excellent

Poor

Poor

Good

Low Birefringence

Excellent

Excellent

Excellent

Poor

Poor

Excellent

Low Water Absorption

Excellent

Excellent

Poor

Good

Excellent

Excellent

Impact Resistance

Poor

Good

Good

Excellent

Good

Excellent

Moldability

Fair

Excellent

Good

Excellent

Excellent

Good

Heat Resistance

Excellent

Good

Poor

Good

Poor

Very Good

Coating Adhesion

Excellent

Good

Fair

Fair

Fair

Good

免責(zé)聲明

  • 凡本網(wǎng)注明“來(lái)源:化工儀器網(wǎng)”的所有作品,均為浙江興旺寶明通網(wǎng)絡(luò)有限公司-化工儀器網(wǎng)合法擁有版權(quán)或有權(quán)使用的作品,未經(jīng)本網(wǎng)授權(quán)不得轉(zhuǎn)載、摘編或利用其它方式使用上述作品。已經(jīng)本網(wǎng)授權(quán)使用作品的,應(yīng)在授權(quán)范圍內(nèi)使用,并注明“來(lái)源:化工儀器網(wǎng)”。違反上述聲明者,本網(wǎng)將追究其相關(guān)法律責(zé)任。
  • 本網(wǎng)轉(zhuǎn)載并注明自其他來(lái)源(非化工儀器網(wǎng))的作品,目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點(diǎn)和對(duì)其真實(shí)性負(fù)責(zé),不承擔(dān)此類作品侵權(quán)行為的直接責(zé)任及連帶責(zé)任。其他媒體、網(wǎng)站或個(gè)人從本網(wǎng)轉(zhuǎn)載時(shí),必須保留本網(wǎng)注明的作品第一來(lái)源,并自負(fù)版權(quán)等法律責(zé)任。
  • 如涉及作品內(nèi)容、版權(quán)等問(wèn)題,請(qǐng)?jiān)谧髌钒l(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,否則視為放棄相關(guān)權(quán)利。
企業(yè)未開(kāi)通此功能
詳詢客服 : 0571-87858618
少妇一区二区三区粉嫩av-国产精品区久久久久久久| 欧美精品啪啪人妻一区二区-嫩草人妻舔舔羞羞一区二区三区| 免费午夜福利视频在线观看-亚洲成人日韩欧美伊人一区| 久久99国产综合精品女人-日韩一区二区三区在线不卡| 国产成人精品亚洲精品密奴-国产成人AV无码精品| 欧美看片一区二区三区-人妻无卡精品视频在线| 国产福利视频一区二区三区-日韩人妻中文视频精品| 在线免费观看黄片喷水-国产精品白丝网站在线观看| 久久精品人妻一区二区三区极品-久久99热这里只有精品免费| 97一区二区三区在线-欧美护士性极品hd4k| 熟女少妇免费一区二区-麻豆一区二区三区免费在线观看| 麻豆久久国产精品亚洲-日本理论中文字幕在线视频| 天天干天天天天天天天-亚洲综合av在线三区| 91亚洲美女视频在线-熟妇人妻精品一区二区三区蜜臀| 国产aa视频一区二区三区-国产精品久久久久久久毛片动漫| 久久影视av一区二区-人妻激情乱偷一区二区三区| 婷婷亚洲欧美综合丁香亚洲-超刺激国语对白在线视频| 国模自慰一区二区三区-日韩一级黄色片天天看| 精品国产综合一区二区三区-蜜臀一区二区三区刺激视频| 91九色蝌蚪丝袜人妻-国产精品9999网站| 在线观看中午中文乱码-2021国产一级在线观看| 欧美字幕一区二区三区-好吊妞欧美一区二区在线观看| 91精品国产影片一区二区三区-欧美精品久久久精品一区二区| 99在线观看精品视频免费-国产极品一区二区三区四区| 国产aa视频一区二区三区-国产精品久久久久久久毛片动漫| 亚洲一区二区少妇激情-国产精品美女久久高潮| 日韩中文字幕v亚洲中文字幕-日韩亚洲av免费在线观看| 国产美女网站在线观看-国产精品亚洲综合网69| 欧美三级韩国三级日本三斤-日本不卡一区不卡二区| 亚洲av日韩五月天久热精品-国产日韩欧美一区二区三区群战| 午夜福利卫生纸福利院-一区二区三区久久亚洲| 女主播啪啪大秀免费观看-精品99午夜福利影院| 中文字幕亚洲中文字幕-丰满老妇伦子交尾在线播放| 青青操大香蕉在线播放-国产亚洲欧美精品在线观看| 国产精品熟女视频一区二区-国产日韩精品欧美一区喷水| 亚洲av乱码一区二区-九九免费在线观看视频| 国产美女裸露无遮挡双奶网站-国产精品色午夜视频免费看| 久久精品亚洲国产av久-国产精品视频一区二区免费| 性激烈欧美三级在线播放-久久中文字幕人妻少妇| 欧美精品一区二区不卡-精品国产一区二区三区香蕉网址| 亚洲另类自拍唯美另类-99国产精品兔免久久|