植物表型成像技術(shù)在生態(tài)學(xué)領(lǐng)域的應(yīng)用:生態(tài)適應(yīng)、競爭與氣候 變化響應(yīng)
作為一門研究生物與自然環(huán)境相互關(guān)系的學(xué)科,在生態(tài)學(xué)研究領(lǐng)域中,植物與環(huán)境的相互關(guān)系一直是非常重要的研究方向,具體研究內(nèi)容包括而不限于:植物如何適應(yīng)自然環(huán)境尤其是在嚴(yán)苛的環(huán)境條件下是如何適應(yīng)與響應(yīng)的;在特定生境下不同植物如何取得生態(tài)優(yōu)勢并競爭生態(tài)位;在全球溫室效應(yīng)背景下,植物如何應(yīng)對逐漸升高的溫度、大氣CO2濃度以及如何借助植物實現(xiàn)碳中和等等。
從21世紀(jì)10年代開始逐漸受到極大關(guān)注的表型phenotype、表型組phenome、表型組學(xué)phenomics概念則與生態(tài)學(xué)的相關(guān)概念不謀而合?,F(xiàn)代表型概念也同樣強調(diào)環(huán)境對表型的影響。如今如火如荼的植物表型組學(xué)主要就是研究相同基因型的植物在不同的環(huán)境條件的表型變化與應(yīng)答。
因此,基于植物表型組學(xué)研究需求而在近十年中逐漸開發(fā)完善的植物表型成像技術(shù)也同樣可以用于與生態(tài)學(xué)研究領(lǐng)域。各種植物表型成像技術(shù)在生態(tài)學(xué)領(lǐng)域的作用請見下表:
國內(nèi)外研究者利用易科泰及合作廠家提供的植物表型成像技術(shù)已經(jīng)取得了大量生態(tài)研究成果,下面我們介紹其中的部分重要成果:
案例一、Who will win where and why? 牧草與入侵雜草的熱帶高山生態(tài)位競爭
在熱帶農(nóng)業(yè)中,蕨類植物經(jīng)常會入侵牧場,與普通牧草競爭。由于這種雜草的侵?jǐn)_,人們經(jīng)常放棄原有牧場,將熱帶森林開辟為新的放牧區(qū),嚴(yán)重破壞生態(tài)系統(tǒng)生物多樣性。
德國奧斯納布呂克大學(xué)對厄瓜多爾安第斯熱帶草原上的兩種主要競爭植物——非洲狗尾草Setaria sphacelata和蕨類雜草Pteridium arachnoideum的生態(tài)競爭進(jìn)行了研究。研究區(qū)衛(wèi)星數(shù)據(jù)顯示,隨著海拔高度的增加,蕨類的競爭力逐漸增強。隨著海拔的升高,兩種植物的生物量比重逐漸向蕨類植物傾斜,在海拔1800 m以上,蕨類的生長能力超過了狗尾草。
研究人員考慮海拔高度變化中,溫度和紫外光輻射是對植物生長影響最大的兩個關(guān)鍵環(huán)境因素。在進(jìn)一步的溫室試驗中,他們在溫室中模擬不同環(huán)境溫度并補充紫外光,同時用光合儀和FluorCam葉綠素?zé)晒獬上裣到y(tǒng)對在其中培養(yǎng)的狗尾草與蕨類光合作用進(jìn)行測量。結(jié)果發(fā)現(xiàn),狗尾草的凈光合速率要對低溫更敏感,而其光系統(tǒng)II最大光化學(xué)效率Fv/Fm在補充紫外光后顯著降低,這說明其光系統(tǒng)活性被紫外光嚴(yán)重抑制。蕨類對溫度不敏感的光合作用及其對紫外線輻射的有效保護(hù)是其能夠在生態(tài)競爭中獲得成功的原因。
再進(jìn)一步的葉片黃酮與多酚等次生代謝物含量測量,則解釋了這其中的機制。黃酮類物質(zhì)可以吸收UV-A、UV-B及藍(lán)光,從而有效屏蔽高能輻射對植物的損傷。同時黃酮也是抗氧化劑和ROS清除劑。結(jié)果發(fā)現(xiàn),在高海拔地區(qū),蕨類合成了大量的黃酮與多酚物質(zhì)。而狗尾草的次生代謝水平則基本沒有變化。
由此研究人員得出結(jié)論,由于在低溫下較差的光合能力和無法為葉片細(xì)胞提供足夠紫外線屏障,使得狗尾草在這場高海拔生態(tài)位競爭中敗下陣來。
在這個案例中,研究人員使用了多臺儀器并通過較為復(fù)雜的色譜質(zhì)譜分析來測量次生代謝水平。而現(xiàn)在的先進(jìn)技術(shù)已經(jīng)可以實現(xiàn)在一臺儀器上無損檢測植物葉綠素?zé)晒馀c次生代謝水平。FluorTron®多功能高光譜成像分析系統(tǒng)既可以通過多激發(fā)光葉綠素?zé)晒飧吖庾V成像分析來測量植物的光合能力與光系統(tǒng)狀態(tài);也可以利用UV-MCF紫外光激發(fā)生物熒光高光譜成像技術(shù)來檢測植物黃酮、多酚類物質(zhì)的次生代謝水平;還可以進(jìn)行高光譜成像分析,在空間維度和光譜維度上對物體表面反射光信息成像。所有這些成像功能均可對植物活體進(jìn)行無損測量。
案例二、緯度策略?北方與南方銀樺的生態(tài)適應(yīng)策略差異
在北方生長的樹木會受到生長期較短的限制。那么它們的生態(tài)適應(yīng)策略又與生長在南方的同類有什么差異呢?
東芬蘭大學(xué)將北方(北緯67°)與南方(北緯61°)銀樺(Betula pendula Roth)在同樣的生長條件下進(jìn)行培養(yǎng)。結(jié)果表明兩者的總干重、枝干重和根干重等沒有差異。而北方銀樺的葉干重更低,同時具備更高的凈光合速率(凈CO2同化速率)Anet和更高的氣孔導(dǎo)度gs,因此能達(dá)到與南方銀樺類似的總CO2同化速率。FluorCam葉綠素?zé)晒獬上窠Y(jié)果則表明,北方銀樺具備更高的光系統(tǒng)II最大量子產(chǎn)額(最大光化學(xué)效率)Fv/Fm。同時,北方銀樺也具有更高的根生物量分?jǐn)?shù)。
由此,研究人員確認(rèn),北方銀樺的高緯度生存策略:更高效的光合能力與更多投資地下生長,使其更能適應(yīng)北極土壤,有益于其在自然與人工擴散過程中適應(yīng)新氣候。這一研究成果發(fā)表于2021年《Tree Physiology》。
本研究中根系及地上部生物量的測量仍采用的是取樣洗根、干燥稱重的傳統(tǒng)方法。這種方法較為準(zhǔn)確,但最大的問題是無法對植物的生長動態(tài)進(jìn)行測量分析。RhizoTron®植物根系多功能高光譜成像分析系統(tǒng)基于RhizoTron®根窗技術(shù),實現(xiàn)根系表型的原位連續(xù)檢測;可同時對根系和地上部幼苗進(jìn)行高光譜成像、RGB成像、UV-MCF紫外光激發(fā)生物熒光高光譜成像、Thermo-RGB成像等測量分析;還可與LED培養(yǎng)系統(tǒng)、傳送系統(tǒng)結(jié)合,實現(xiàn)大樣品量的高通量自動化連續(xù)監(jiān)測。
案例三、溫室效應(yīng)背景下油菜的生理生態(tài)響應(yīng)
氣候條件會影響植物的許多表型性狀,包括生物化學(xué)、生理、形態(tài)以及它們在地球的分布。目前,人類活動造成的溫室氣體排放使全球溫度上升,并引起一系列的全球氣候變化。因此,科學(xué)家需要預(yù)測在未來越發(fā)嚴(yán)峻的環(huán)境條件下,植物如何進(jìn)行響應(yīng)和調(diào)節(jié),提前應(yīng)對可能發(fā)生的生態(tài)災(zāi)難,并以此為基礎(chǔ)培育能夠應(yīng)對未來氣候條件的作物品種。
西班牙國家研究委員會的Mónica Pineda與Matilde Barón合作,利用RGB成像、UV-MCF多光譜熒光成像、紅外熱成像、高光譜等無損植物表型成像技術(shù),研究油菜在氣候變化條件下的生長表型響應(yīng)與健康狀況。他們模擬了三種不同溫度與CO2濃度的環(huán)境條件:
CCC:目前的氣候條件
RCP 4.5:基于IPCC報告推測的2081–2100年氣候條件(當(dāng)前政府的氣候變化應(yīng)對政策)
RCP 8.5:基于IPCC報告推測的2081–2100年氣候條件(不限制溫室氣體排放)
RGB彩色照片即可看到,在氣候變化條件下,油菜葉片逐漸變色、枯萎。多光譜熒光參數(shù)F440和F520升高,代表次生代謝水平升高(植物次生代謝一般在應(yīng)對病害、干旱等脅迫因素時才會顯著升高)。多光譜熒光比值參數(shù)F680/F740升高,代表葉綠素濃度降低。紅外熱成像測量的修正葉溫TL-TA上升(葉溫減去氣溫),代表其氣孔導(dǎo)度下降,蒸騰作用降低,并且可能存在代謝紊亂。后續(xù)研究進(jìn)一步發(fā)現(xiàn),溫室效應(yīng)也會改變油菜黑腐病的發(fā)病狀況。
基于高光譜成像技術(shù),研究人員測量并計算了一系列與植物色素、脅迫、活力、光合相關(guān)的植被指數(shù),如花青素指數(shù)ARI、類胡蘿卜素指數(shù)CRI、生病花椰菜指數(shù)DBI、歸一化植被指數(shù)NDVI和光化學(xué)反射指數(shù)PRI,并且根據(jù)研究結(jié)果提出了蕓薹屬氣候脅迫指數(shù)CSIB。這些參數(shù)指標(biāo)分別與色素含量、生物脅迫指示、活力、光合作用相關(guān)。與其他植被指數(shù)相比,CSIB在實驗處理25天時即可很好地區(qū)分三種不同處理的樣品。進(jìn)一步的數(shù)據(jù)分析發(fā)現(xiàn),CSIB與F520有較強的相關(guān)性,暗示CSIB代表的植物生理特性也是與次生代謝有關(guān)的。
西班牙國家研究委員會這一系列研究使用的是FluorCam多光譜熒光成像系統(tǒng)為核心的模塊式植物表型成像系統(tǒng)。類似的研究工作更適于使用PhenoTron® PTS植物表型成像分析系統(tǒng)。這一系統(tǒng)采用PTS(Plant-To-Sensor)植物自動傳送技術(shù),樣品依次自動傳送至相應(yīng)成像工作站,采集多傳感器表型成像大數(shù)據(jù),實現(xiàn)一站式、高通量、無損傷反射光成像、葉綠素?zé)晒獬上瘛?/span>UV-MCF多光譜熒光成像及紅外熱輻射成像分析等。
參考文獻(xiàn):
1. Knuesting J, et al. 2018. Who will win where and why? An ecophysiological dissection of the competition between a tropical pasture grass and the invasive weed Bracken over an elevation range of 1000m in the tropical Andes. PLoS ONE 13(8): e0202255
2. Tenkanen A, et al. 2021. Strategy by latitude? Higher photosynthetic capacity and root mass fraction in northern than southern silver birch (Betula pendula Roth) in uniform growing conditions. Tree Physiology, 41(6): 974–991
3. Pineda M, et al. 2022. Health Status of Oilseed Rape Plants Grown under Potential Future Climatic Conditions Assessed by Invasive and Non-Invasive Techniques. Agronomy 12: 1845
4. Pineda M, et al. 2023. Assessment of Black Rot in Oilseed Rape Grown under Climate Change Conditions Using Biochemical Methods and Computer Vision. Plants 12: 1322
北京易科泰生態(tài)技術(shù)公司提供植物生態(tài)表型研究全面技術(shù)方案:
l FluorTron®多功能高光譜成像分析系統(tǒng)
l FluorCam葉綠素?zé)晒獬上裣到y(tǒng)
l FluorTron®植物光合表型成像分析系統(tǒng)
l FluorCam多光譜熒光成像系統(tǒng)
l PhenoTron®植物表型成像分析系統(tǒng)
l RhizoTron®根系表型成像分析系統(tǒng)
l LCpro T智能型光合作用測量系統(tǒng)
l Ecodrone®輕便型一體式多光譜-紅外熱成像無人機遙感系統(tǒng)
l Ecodrone®一體式高光譜-紅外熱成像-激光雷達(dá)無人機遙感系統(tǒng)
相關(guān)產(chǎn)品
免責(zé)聲明
- 凡本網(wǎng)注明“來源:化工儀器網(wǎng)”的所有作品,均為浙江興旺寶明通網(wǎng)絡(luò)有限公司-化工儀器網(wǎng)合法擁有版權(quán)或有權(quán)使用的作品,未經(jīng)本網(wǎng)授權(quán)不得轉(zhuǎn)載、摘編或利用其它方式使用上述作品。已經(jīng)本網(wǎng)授權(quán)使用作品的,應(yīng)在授權(quán)范圍內(nèi)使用,并注明“來源:化工儀器網(wǎng)”。違反上述聲明者,本網(wǎng)將追究其相關(guān)法律責(zé)任。
- 本網(wǎng)轉(zhuǎn)載并注明自其他來源(非化工儀器網(wǎng))的作品,目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點和對其真實性負(fù)責(zé),不承擔(dān)此類作品侵權(quán)行為的直接責(zé)任及連帶責(zé)任。其他媒體、網(wǎng)站或個人從本網(wǎng)轉(zhuǎn)載時,必須保留本網(wǎng)注明的作品第一來源,并自負(fù)版權(quán)等法律責(zé)任。
- 如涉及作品內(nèi)容、版權(quán)等問題,請在作品發(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,否則視為放棄相關(guān)權(quán)利。