納米材料促進(jìn)植物/微藻光合作用機(jī)制研究
納米材料促進(jìn)植物/微藻光合作用機(jī)制研究
-FluoTron多功能高光譜成像技術(shù)、葉綠素?zé)晒饧夹g(shù)
隨著全球能源危機(jī)與氣候變化的雙重挑戰(zhàn)加劇,開發(fā)高效、可持續(xù)的碳中和技術(shù)成為科學(xué)界的核心議題之一。微藻(如小球藻)因其光合固碳能力、快速生物質(zhì)積累特性及高附加值產(chǎn)物合成潛力,被視為生物能源開發(fā)與工業(yè)碳捕獲的理想載體。然而,傳統(tǒng)微藻培養(yǎng)體系受限于光合作用效率的天然瓶頸——包括光能吸收范圍狹窄、光系統(tǒng)II(PSII)電子傳遞速率不足,以及卡爾文循環(huán)中Rubisco酶固碳活性低下等問題,導(dǎo)致其規(guī)模化應(yīng)用面臨經(jīng)濟(jì)性與產(chǎn)能的雙重制約。
近年來(lái),納米材料憑借其光物理化學(xué)性質(zhì),可精準(zhǔn)調(diào)控光合作用的關(guān)鍵步驟:通過拓寬光吸收光譜范圍增強(qiáng)光捕獲效率,通過介導(dǎo)電子傳遞鏈降低光系統(tǒng)間的能量損耗,通過仿生礦化策略優(yōu)化CO?傳遞與固定路徑。例如,石墨烯量子點(diǎn)(GQDs)可通過π-π共軛結(jié)構(gòu)與PSII反應(yīng)中心色素分子耦合,加速光生電荷分離;金屬氧化物納米顆粒(如TiO?、CeO?)則可通過表面氧空位調(diào)控活性氧(ROS)平衡,緩解光抑制效應(yīng)。
光作為藻類利用能量的主要形式,是影響微藻生長(zhǎng)的最重要因素之一。 光能通過光合系統(tǒng)中的光合色素(包括葉綠素、類胡蘿卜素和藻膽蛋白)被吸收與傳遞。然而,這些色素對(duì)白光的吸收范圍最多僅覆蓋10%。作為主要光合色素,葉綠素a和b僅對(duì)藍(lán)光(450–480 nm)和紅光(605–700 nm)具有雙重吸收峰,為了太陽(yáng)能利用率,開發(fā)高性能光轉(zhuǎn)換材料以提高紅藍(lán)光吸收效率,或利用其他波長(zhǎng)的光線促進(jìn)生長(zhǎng),可能成為可行策略。本綜述總結(jié)了納米材料通過提高光合利用效率和去除活性氧的潛力來(lái)增強(qiáng)微藻生長(zhǎng),包括增加藍(lán)光和紅光的吸收、近紅外光的光譜轉(zhuǎn)化、紫外光的光譜轉(zhuǎn)化等來(lái)增強(qiáng)光能利用效率。
根據(jù)以上實(shí)驗(yàn)研究表明,高光譜技術(shù)、葉綠素?zé)晒饧夹g(shù)能夠全面評(píng)估植物/微藻的光能利用效率、光合作用效率等,同時(shí)可以實(shí)現(xiàn)對(duì)納米材料的光學(xué)性質(zhì)檢測(cè),另外高光譜技術(shù)還可高通量篩選發(fā)射光譜與葉綠體吸收光譜相匹配的納米材料,為納米技術(shù)在農(nóng)業(yè)領(lǐng)域、生物質(zhì)能源領(lǐng)域的應(yīng)用提供了強(qiáng)有力的工具。
Fluortron多功能高光譜成像系統(tǒng)具有多激發(fā)光葉綠素?zé)晒飧吖庾V成像分析、UV-MCF紫外光激發(fā)生物熒光高光譜成像分析、(反射光)高光譜成像分析等多重功能,同時(shí)具備非接觸、無(wú)損傷、實(shí)時(shí)性強(qiáng)、信息量豐富等特點(diǎn),可對(duì)納米材料、微藻(小球藻)等進(jìn)行全面的光譜解析。能夠?qū)崿F(xiàn)微藻(如小球藻)濃度測(cè)量、材料的光學(xué)特征性質(zhì)研究、反映材料對(duì)光合反應(yīng)中心PSⅠ、PSⅡ的影響等目標(biāo),可結(jié)合葉綠素?zé)晒饧夹g(shù),探索納米材料促進(jìn)微藻(小球藻)光合作用機(jī)制。
其他藻類研究技術(shù)
l 藻類葉綠素?zé)晒鉁y(cè)量與監(jiān)測(cè)
l 藻類葉綠素?zé)晒獬上衽c高光譜成像
l FKM多光譜熒光動(dòng)態(tài)顯微成像技術(shù)
l 藻類培養(yǎng)與在線監(jiān)測(cè)/光養(yǎng)生物反應(yīng)器技術(shù)
參考文獻(xiàn):
[1]Yuan X ,Gao X ,Liu C , et al.Application of Nanomaterials in the Production of Biomolecules in Microalgae: A Review[J].Marine Drugs,2023,21(11):594-.
[2] Pereira F, Vicente A A, Vaz F, et al. Influence of plasmonic thin-film-coated photobioreactors on microalgal biomass composition[J]. ACS Sustainable Chemistry & Engineering, 2025.
[3] Li, W.; Wu, S.S.; Zhang, H.R.; Zhang, X.J.; Zhuang, J.L.; Hu, C.F.; Liu, Y.L. Enhanced biological photosynthetic efficiency using light-harvesting engineering with dual-emissive carbon dots.Adv. Funct. Mater.2018,28, 1804004.
[4] Bernhardt, J.R., Sunday, J.M., O’Connor, M.I., 2017. An empirical test of the temperature dependence of carrying capacity. bioRxiv, 210690.
相關(guān)產(chǎn)品
免責(zé)聲明
- 凡本網(wǎng)注明“來(lái)源:化工儀器網(wǎng)”的所有作品,均為浙江興旺寶明通網(wǎng)絡(luò)有限公司-化工儀器網(wǎng)合法擁有版權(quán)或有權(quán)使用的作品,未經(jīng)本網(wǎng)授權(quán)不得轉(zhuǎn)載、摘編或利用其它方式使用上述作品。已經(jīng)本網(wǎng)授權(quán)使用作品的,應(yīng)在授權(quán)范圍內(nèi)使用,并注明“來(lái)源:化工儀器網(wǎng)”。違反上述聲明者,本網(wǎng)將追究其相關(guān)法律責(zé)任。
- 本網(wǎng)轉(zhuǎn)載并注明自其他來(lái)源(非化工儀器網(wǎng))的作品,目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點(diǎn)和對(duì)其真實(shí)性負(fù)責(zé),不承擔(dān)此類作品侵權(quán)行為的直接責(zé)任及連帶責(zé)任。其他媒體、網(wǎng)站或個(gè)人從本網(wǎng)轉(zhuǎn)載時(shí),必須保留本網(wǎng)注明的作品第一來(lái)源,并自負(fù)版權(quán)等法律責(zé)任。
- 如涉及作品內(nèi)容、版權(quán)等問題,請(qǐng)?jiān)谧髌钒l(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,否則視為放棄相關(guān)權(quán)利。