康寶智信測量技術(shù)(北京)有限公司
主營產(chǎn)品: 水分吸附分析儀,水分吸附等溫線,蒸汽吸附分析儀 |
聯(lián)系電話
康寶智信測量技術(shù)(北京)有限公司
主營產(chǎn)品: 水分吸附分析儀,水分吸附等溫線,蒸汽吸附分析儀 |
聯(lián)系電話
2024-9-12 閱讀(464)
驗(yàn)證用于測量固體藥品水分活度的鏡面冷凝露點(diǎn)法,測試不同溫度、樣品制備和環(huán)境暴露時間的影響
Harold Alexis Prada-Ramírez, Janeth Carolina Jurado-Ramos, Juan Camilo Fonseca-Acevedo
RPS Pharmacy and Pharmacology Reports, Volume 3, Issue 1, January 2024, rqae001, https://doi.org/10.1093/rpsppr/rqae001
目的:本研究的目的是驗(yàn)證鏡面冷凝露點(diǎn)法用于量化片劑和膠囊中的水分活度,評估不同溫度、樣品制備和局部環(huán)境暴露時間的影響。
結(jié)果:驗(yàn)證一種靈敏及精確的水分活度測量方法已成為制藥行業(yè)的一個重要目標(biāo),因?yàn)樗赡苡兄陬A(yù)測評估固體產(chǎn)品上的微生物生物負(fù)載,因?yàn)榇蠖鄶?shù)嗜干和嗜滲微生物無法在低于0.60的水分活度水平下生長,從而安全地降低使用傳統(tǒng)方法進(jìn)行常規(guī)微生物分析的頻率。對于所有測試的固體樣品,考慮到樣品制備、環(huán)境暴露時間和不同的測量溫度,進(jìn)行了方法的適用性。根據(jù)USP指南,露點(diǎn)法滿足了精密度(SD<0.5)、準(zhǔn)確性(95%-105%范圍內(nèi)的回收率)、線性(R2>0.99)、耐用性(方差分析,P<0.05)、重復(fù)性、測試范圍(aw 0.17-1)、檢測限(aw=0.17)和定量限(aw=0.25)等基本參數(shù)。
結(jié)論:鏡面冷凝露點(diǎn)法已被證明可以產(chǎn)生準(zhǔn)確、精確和穩(wěn)健的數(shù)據(jù),使其成為制藥行業(yè)測量片劑和膠囊中水分活度的一種優(yōu)秀方法,可以直接評估微生物負(fù)荷。
關(guān)鍵詞:鏡面冷凝露點(diǎn)法 (DPCMM), 替代微生物方法 (AMM), 微生物快速檢測方法 (RMM), 驗(yàn)證測試。
介紹
在過去的幾十年里,替代微生物方法(AMM)的實(shí)施一直在增長,這是由新的技術(shù)進(jìn)步推動的,因?yàn)樗鼈兛梢栽趫?zhí)行、監(jiān)測和自動化方面提供好處,同時提高準(zhǔn)確性、特異性、靈敏度和精密度,與傳統(tǒng)方法相比,它們要么縮短了微生物過程時間,要么實(shí)際上可能全完廢除微生物檢測[1-5]。此外,這些技術(shù)更環(huán)保,因?yàn)槲⑸飬⒖挤椒óa(chǎn)生的廢物大幅減少[6-8]。值得注意的是,AMM的勞動密集度較低,減少了日常處理時間,因?yàn)樗鼈儠詣由少|(zhì)量報(bào)告,其中包含制藥行業(yè)所需的所有項(xiàng)目,從而減少了日常手動數(shù)據(jù)轉(zhuǎn)錄,這可能會導(dǎo)致用戶錯誤[6-8]。
在這個背景下,鏡面冷凝露點(diǎn)法(DPCMM)作為一種自動化系統(tǒng),已經(jīng)成為一種替代微生物方法,用于根據(jù)固體藥品內(nèi)部發(fā)生的游離水狀態(tài)來評估藥品的微生物質(zhì)量[9,10]。考慮到藥品內(nèi)部的自由水可用性是強(qiáng)烈限制微生物增殖的關(guān)鍵因素,這可以作為微生物負(fù)荷的直接衡量標(biāo)準(zhǔn),因?yàn)榇蠖鄶?shù)嗜干真菌和嗜滲酵母在水分活度低于0.60時無法生長[9,10]。
盡管如此,USP<1112>一直鼓勵制藥行業(yè)在低水分活度水平的產(chǎn)品中使用水分活度作為AMM,因?yàn)樗鼈兛赡懿灰妆晃廴?/span>[9,10]。例如,片劑和膠囊的水分活度約為0.30-0.50,這使它們成為排除微生物檢測的理想目標(biāo)候選者,因?yàn)樵谶@些低水分活度水平下,令人反感的病原體、中溫菌、酵母和霉菌不太可能在藥品上生長[9,10]。例如,USP<1112>認(rèn)識到了新的可能性,即允許將AMM作為水分活度測量來實(shí)施,作為微生物生物負(fù)載測定的直接微生物評估,以排除逐批的常規(guī)微生物分析,這通常比執(zhí)行該方法或得出藥品質(zhì)量狀態(tài)的最終結(jié)果需要更長的時間[9]。
因此,根據(jù) USP <1111> 要求的所有口服固體樣品(如片劑和膠囊)的微生物質(zhì)量驗(yàn)收標(biāo)準(zhǔn),酵母和霉菌總數(shù)應(yīng)小于20 CFU,需氧微生物總數(shù)應(yīng)小于200 CFU,并且樣品應(yīng)不含大腸桿菌和伯克霍爾德菌復(fù)合體,以符合產(chǎn)品上市銷售前的微生物規(guī)范 [2, 11]。為了減少對片劑和膠囊進(jìn)行常規(guī)微生物分析,可以使用鏡面冷凝露點(diǎn)法水分活度儀測試樣品,應(yīng)實(shí)施基于風(fēng)險(xiǎn)的方法,并且應(yīng)包括微生物測試結(jié)果和生產(chǎn)過程的驗(yàn)證 [9]。因此,水分活度水平遠(yuǎn)低于 0.75 的固體藥物產(chǎn)品可能是減少甚至全完消除微生物測試的佳絕選擇,從而使微生物評估的質(zhì)量標(biāo)準(zhǔn)與良好生產(chǎn)規(guī)范保持一致,因?yàn)樵诘退只疃人较拢a(chǎn)品無法支持微生物生長 [12–15]。
然而,與 USP 一樣,水分活度測量本身不應(yīng)作為避免微生物檢測分析的一唯標(biāo)準(zhǔn) [9]。因此,應(yīng)確定至少最后 20 批最終產(chǎn)品的微生物檢測結(jié)果,包括原材料和初級包裝。除了水分活度(aw < 0.60)和微生物結(jié)果外,在基于風(fēng)險(xiǎn)的方法中還應(yīng)考慮經(jīng)過驗(yàn)證的制造工藝以及經(jīng)過驗(yàn)證的清潔工藝,以有效支持跳過逐批微生物檢測 [9]。
根據(jù) USP 第 1058 章概述,水分測量設(shè)備屬于 B 類,因此應(yīng)通過構(gòu)建具有已知水分活度的鹽溶液校準(zhǔn)曲線來標(biāo)準(zhǔn)化設(shè)備 [16]。該校準(zhǔn)曲線可根據(jù) USP 第 1225 章的要求驗(yàn)證新技術(shù) [8]。因此,通過校準(zhǔn)曲線,將測試線性、操作范圍、精密度、準(zhǔn)確性、耐用性、穩(wěn)健性、檢測限和定量限等基本驗(yàn)證參數(shù) [7, 8]。
根據(jù) USP<1225>,水分活度設(shè)備被歸類為驗(yàn)證類別 III,因此,重復(fù)性和再現(xiàn)性是成功進(jìn)行鏡面冷凝露點(diǎn)水分活度儀在片劑和膠囊中水分活度定量驗(yàn)證所必需的驗(yàn)證參數(shù) [8],因此,本驗(yàn)證研究的主要目的是證明鏡面冷凝露點(diǎn)法的整體性能符合 USP 1225 對萘普生、阿莫西林、環(huán)丙沙星、氯苯那敏、潑尼松龍、氟桂利嗪和美索巴莫作為片劑和膠囊代表性樣品的要求,盡管不同的讀數(shù)溫度、不同的樣品制備和不同的樣品暴露于局部環(huán)境等幾個變量都會產(chǎn)生影響[8]。首先,使用已知水分活度的標(biāo)準(zhǔn)溶液,在25°C和30°C下建立每個標(biāo)準(zhǔn)溶液(0.25、0.50、0.76、0.92和1)記錄的水分活度與Aqualab 4TE水分活度儀測量結(jié)果之間的校準(zhǔn)曲線。
對于所有檢測的固體樣品,即萘普生、阿莫西林、環(huán)丙沙星、氯苯那敏、潑尼松龍、氟桂利嗪和美索巴莫,證明了該方法的適用性,考慮了樣品制備(粉碎樣品與整件樣品)、不同的讀數(shù)溫度(25°C 與 30°C)以及樣品在實(shí)驗(yàn)室環(huán)境中的暴露情況(暴露 5 分鐘的樣品與未暴露的樣品),以驗(yàn)證這些不同條件之間是否存在統(tǒng)計(jì)學(xué)上的顯著差異 [17–19]。此外,根據(jù)美國藥典的要求建立了驗(yàn)證標(biāo)準(zhǔn),例如耐用性(重現(xiàn)性)、使用不同批次和用戶以及精確度(重復(fù)性)[17–19]。對于每個檢測的固體樣品,至少使用三個批次,并且兩個不同操作人員參與樣品制備以及水分活度的樣品測量 [17–19]。
實(shí)驗(yàn)
材料試劑與方法
使用已知水分活度的標(biāo)準(zhǔn)溶液來建立校準(zhǔn)曲線,以確定鏡面冷凝露點(diǎn)法的操作范圍和線性。所用的標(biāo)準(zhǔn)溶液為氯化鋰 13.41 mol/kg ± 0.5% aw = 0.25、氯化鋰 8.57 mol/kg ± 0.5% aw = 0.50、氯化鈉 6.0 mol/kg ± 0.5% aw = 0.76、氯化鈉 2.33 mol/kg ± 0.5% aw = 0.92 和蒸餾水蒸汽 aw = 1.00 ± 0.003。測量室溫度設(shè)定為 25°C 和 30°C,以進(jìn)行所有藥片和膠囊的水分活度測量。
樣品:萘普生、阿莫西林、環(huán)丙沙星、氯苯那敏、潑尼松龍、氟桂利嗪和美索巴莫,由 Coaspharma Laboratories S.A.S 提供,用于進(jìn)行露點(diǎn)法驗(yàn)證。對于每個藥片和膠囊,我們使用了三個批次。對于每個批次,我們進(jìn)行了六次重復(fù),以計(jì)算平均值和標(biāo)準(zhǔn)差 (SD)。
Aqualab 4TE 水分活度儀和已知水分活度的標(biāo)準(zhǔn)溶液均從供應(yīng)商 Insulab 處購得。該系統(tǒng)包括一臺露點(diǎn)水分活度儀,配有精確的溫度測量室、專用的 Skala 控制軟件和一臺計(jì)算機(jī)。Skala 控制軟件將水分活度數(shù)據(jù)存儲在亞馬遜網(wǎng)站 (AWS) 上。Skala 控制軟件符合 CFR 21 第 11 部分,確保數(shù)據(jù)完整性和保密性。根據(jù) PDA 指南,用戶和供應(yīng)商均令人滿意地完成了系統(tǒng)的設(shè)計(jì)驗(yàn)證 (DQ)、安裝驗(yàn)證 (IQ)、操作驗(yàn)證 (OQ)、軟件驗(yàn)證 (SV) 和性能驗(yàn)證 (PQ)。
AQUALAB 4TE 水分活度儀(Meter Group,美國華盛頓州普爾曼)和用品均從哥倫比亞的 Meter Group 代表 Insulab S.A.S. 處購得。
方法的適用性
在進(jìn)行驗(yàn)證之前,應(yīng)證明該方法對所有藥片和膠囊的適用性。因此,為了獲得準(zhǔn)確且可重復(fù)的水分活度結(jié)果,必須考慮幾個參數(shù),例如樣品制備(整片藥片單位與藥片粉碎)和樣品在實(shí)驗(yàn)室環(huán)境中的暴露(暴露 5 分鐘的樣品與未暴露的樣品)。當(dāng)?shù)貙?shí)驗(yàn)室條件為相對濕度 40% 和溫度 25°C。
在所有情況下,必須將具有代表性的藥片和膠囊放入塑料樣品杯中,同時考慮到其容量不應(yīng)超過其總?cè)萘康?/span> 50%,以避免在樣品測量過程中腔體受到污染。同樣,應(yīng)將固體樣品放入一次性杯中,確保樣品盡可能全完覆蓋塑料杯底部。
對于所有測試的藥片和膠囊,都進(jìn)行了該方法的適用性測試。一旦證明了露點(diǎn)水分活度儀對固體樣品的有效性,就使用三個不同的批次和每個批次的六個重復(fù)樣品進(jìn)行驗(yàn)證。此外,還使用兩個不同的操作人員來計(jì)算所測試的每個固體樣品的重復(fù)性。
校準(zhǔn)曲線、線性和有效范圍
校準(zhǔn)曲線中繪制的值與最小二乘回歸擬合,并計(jì)算判定系數(shù) (R2)。將露點(diǎn)水分活度儀生成的數(shù)據(jù)和標(biāo)準(zhǔn)溶液的預(yù)期真實(shí)值繪制在 Microsoft Excel 中,通過繪制露點(diǎn)水分活度儀測得的水分活度相對于已知主要鹽標(biāo)準(zhǔn)值的圖來生成校準(zhǔn)曲線。這樣,為校準(zhǔn)曲線繪制了五個數(shù)據(jù)點(diǎn)(aw = 0.25、aw = 0.50、aw = 0.76、aw = 0.92 和 aw = 1)。如 USP 章節(jié) <922> 所述,校準(zhǔn)曲線的有效期為一年。使用兩種不同的讀數(shù)溫度 25°C 和 30°C 來建立校準(zhǔn)曲線。
準(zhǔn)確性
準(zhǔn)確性定義為 Aqualab 4TE水分活度儀測得的平均測試結(jié)果與真實(shí)預(yù)期值之間的差異。如上所述,對五種不同的檢查標(biāo)準(zhǔn)(aw = 0.25、aw = 0.50、aw = 0.76、aw = 0.92 和 aw = 1)進(jìn)行了六次(6 次重復(fù))測量,并將它們的平均水分活度結(jié)果與各自的真實(shí)水分活度值一起制成表格。準(zhǔn)確性是通過 25°C 和 30°C 下的回收率計(jì)算得出的。
此外,將標(biāo)準(zhǔn)溶液(0.25和0.50 aw)、(0.76和1.00)和(0.92和1.00)以 1:1 的比例混合,并使用 Aqualab 4TE 水分活度儀進(jìn)行了六次重復(fù)測量。計(jì)算每種混合物的摩爾分?jǐn)?shù)并將其與設(shè)備的測量值進(jìn)行比較。水分活度儀測量的回收率應(yīng)在預(yù)期值的95%至105%之間。
檢測限 (LOD) 和定量限 (LOQ)
LOD 和 LOQ 是使用在校準(zhǔn)曲線、線性和操作范圍部分中獲得的最小二乘回歸模型從校準(zhǔn)曲線確定的。因此,LOD 是根據(jù)0.25 aw標(biāo)準(zhǔn)溶液獲得的低最水分活度值的平均值計(jì)算的。
然后對實(shí)驗(yàn)中獲得的值 (n = 6) 取平均值以確定平均值和標(biāo)準(zhǔn)偏差值。使用以下公式計(jì)算 露點(diǎn)水分活度儀的 LOD 和 LOQ:LOD = 3.3 SD/m 和 LOQ = 10 × SD/m,其中 SD 是標(biāo)準(zhǔn)偏差,m 是校準(zhǔn)曲線獲得的線性回歸的斜率。重要的是要考慮到校準(zhǔn)曲線已保存到 Skala 控制設(shè)備的軟件中。因此,對于水分活度儀儀的常規(guī)使用,應(yīng)進(jìn)行驗(yàn)證校準(zhǔn)曲線的兩個點(diǎn),這兩個點(diǎn)最好落入片劑和膠囊的預(yù)期水分活度范圍內(nèi)。因此,在取測試樣品之前,應(yīng)使用溶液氯化鋰 13.41 mol/kg ± 0.5% aw = 0.25 和氯化鋰 8.57 mol/kg ± 0.5% aw = 0.50 進(jìn)行驗(yàn)證讀數(shù)。
精密度、耐用性測試
對于每個測試的萘普生、阿莫西林、環(huán)丙沙星、氯苯那敏、潑尼松龍、氟桂利嗪和美索巴莫樣品,至少采用三個批次和兩個用戶來評估重現(xiàn)性和重復(fù)性。對于每個批次,進(jìn)行六次重復(fù)。然后確定標(biāo)準(zhǔn)差和方差分析 (ANOVA)。評估每個測試的固體樣品的耐用性,考慮內(nèi)部儀器參數(shù),例如測量室溫度(25°C vs. 30°C)。
微生物測試
為了確定水分活度和微生物規(guī)格之間的結(jié)果等效性,對每個測試的萘普生、阿莫西林、環(huán)丙沙星、氯苯那敏、潑尼松龍、氟桂利嗪和美索巴莫樣品進(jìn)行了平行和同時的微生物測試。因此,使用沙氏葡萄糖瓊脂 (SDA) 進(jìn)行酵母和霉菌計(jì)數(shù)。同樣,使用胰蛋白酶大豆瓊脂 (TSA) 進(jìn)行嗜溫菌計(jì)數(shù)。還使用麥康凱瓊脂測試了大腸桿菌等有害病原體。
結(jié)果和討論
校準(zhǔn)曲線、線性和策略范圍
校準(zhǔn)曲線是根據(jù)已知的水分活度標(biāo)準(zhǔn)溶液構(gòu)建的(表 1)。每個標(biāo)準(zhǔn)點(diǎn)(n = 6)的結(jié)果在 25oC 和 30oC 兩種測試溫度下都表現(xiàn)出高度的精確度(可重復(fù)性)(SD < 0.003,表 1)。標(biāo)準(zhǔn)溶液和設(shè)備測量值之間的結(jié)果等效性是儀器線性的衡量標(biāo)準(zhǔn)。事實(shí)上,露點(diǎn)法根據(jù)自由水分活度可用性給出線性結(jié)果的能力,在整個操作范圍內(nèi)保持準(zhǔn)確性,是成功驗(yàn)證系統(tǒng)的關(guān)鍵參數(shù),因?yàn)樗砻魉只疃葍x能夠在 25oC 和 30oC 兩種測試溫度下從 0.25-1.00 aw進(jìn)行精確測量(R2 ≥ 0.99,圖 1)。
表 1 使用標(biāo)準(zhǔn)溶液在 25oC 和 30oC 下建立校準(zhǔn)曲線。對于每個標(biāo)準(zhǔn),進(jìn)行六次重復(fù)以計(jì)算平均值和 SD
Water activity measured by Aqualab 4TE | ||||||
Standard salt | 25°C Mean n = 6 | 25°C SD | 30°C Mean n = 6 | 30°C SD | Percentage of recovery at 25°C | Percentage of recovery at 30°C |
13.41 mol/kg LiCl 0.250 | 0.2492 | 0.0002 | 0.2554 | 0.0008 | 99.6800 | 102.1600 |
8.57 mol/kg LiCl 0.500 | 0.4995 | 0.0002 | 0.5024 | 0.0004 | 99.9000 | 100.4800 |
6.0 mol/kg NaCl 0.760 | 0.7605 | 0.0003 | 0.7578 | 0.0023 | 100.065 | 99.7105 |
2.33 mol/kg NaCl 0.920 | 0.9227 | 0.0006 | 0.9214 | 0.0015 | 102.522 | 100.1522 |
Deionized water 1.00 | 1.0041 | 0.0012 | 1.0039 | 0.0012 | 100.410 | 100.3900 |
圖 1 25oC(左)和 30oC(右)校準(zhǔn)曲線。露點(diǎn)冷鏡法的線性。數(shù)據(jù)是使用水分活度儀(Y 軸)與標(biāo)準(zhǔn)溶液(X 軸)進(jìn)行實(shí)驗(yàn)測量而獲得的。
使用五個標(biāo)準(zhǔn)溶液,根據(jù)校準(zhǔn)曲線確定定量范圍。因此,對于水分活度儀,真實(shí)校準(zhǔn)標(biāo)準(zhǔn)點(diǎn)與在 25oC 下從 0.25 到1.00 測量的水分活度之間存在高度相關(guān)性 (R2 = 1,CC = 1)(圖 1)。同樣,真實(shí)校準(zhǔn)標(biāo)準(zhǔn)點(diǎn)與在 30oC 下從0.25 到 1 測量的水分活度之間存在高度相關(guān)性 (R2 = 0.99,CC = 1)(圖 1)。
這些結(jié)果表明標(biāo)準(zhǔn)溶液在 25oC 和 30oC 溫度下是穩(wěn)定的,在整個測量范圍內(nèi)保持線性。此外,在 25oC 時,檢查點(diǎn) 0.25 的回收率為 99.6800%,檢查點(diǎn) 0.50 的回收率為 99.9000%,檢查點(diǎn) 0.76 的回收率為 100.0658%,檢查點(diǎn) 0.92 的回收率為102.5222%,檢查點(diǎn) 1.000 的回收率為 100.4100%(表 1)。同樣,在 30oC 時,檢查點(diǎn) 0.25 的回收率為 102.1600%,檢查點(diǎn) 0.50 為 100.4800%,檢查點(diǎn) 0.76 為99.7105%,檢查點(diǎn) 0.92 為 100.1522%,檢查點(diǎn) 1.000 為 100.3900%。雖然比較兩個溫度時回收率的范圍為 99%–102%,但這些微小的差異具有統(tǒng)計(jì)學(xué)意義(P < 0.05,方差分析),表明溫度對水分活度有很強(qiáng)的影響。
該方法對藥片和膠囊的適用性
對于萘普生、阿莫西林、環(huán)丙沙星、氯苯那敏、潑尼松龍、氟桂利嗪和美索巴莫樣品,該方法的適用性已被證明可確保成功進(jìn)行水分活度測量。幾種樣品處理方法被認(rèn)為是準(zhǔn)確的,所有測試的藥品都能獲得精確的結(jié)果。這樣,樣品制備(例如粉碎藥片與整片藥片)就面臨著挑戰(zhàn),即回收率是否在定指的 95%–105% 范圍內(nèi)(圖 2)。因此,萘普生、阿莫西林、環(huán)丙沙星、氯苯那敏、潑尼松龍、氟桂利嗪和美索巴莫的回收率分別為 102.9710%、104.8533%、102.9710%、103.8303%、102.9700%、102.9710% 和 102.5910%(表 2)。同時,將萘普生、環(huán)丙沙星、氯苯那敏、潑尼松龍、氟桂利嗪和美索巴莫樣品暴露于當(dāng)?shù)貙?shí)驗(yàn)室環(huán)境(平均溫度 25oC 和 RH 40%)5 分鐘,不會產(chǎn)生 95%–105% 范圍之外的水分活度變化(表 3)。萘普生、阿莫西林、環(huán)丙沙星、氯苯那敏、潑尼松龍、氟桂利嗪和美索巴莫的回收率分別為 101.1973%、107.3081%、101.1973%、99.5718%、101.1973%、101.1973% 和 104.7136%(表 3)。
表2 方法測試的適用性。不同樣品制備(整片單位與粉碎樣品)對萘普生、阿莫西林、環(huán)丙沙星、氯苯那敏、潑尼松龍、氟桂利嗪和美索巴莫的影響。對每個樣品進(jìn)行六次重復(fù),計(jì)算平均值和 SD。
Tablets and capsules | Crushed sample mean n = 6 | Whole tablet unit mean n = 6 | Percentage of recovery |
Naproxen | 0.4224 | 0.4300 | 102.9710 |
Amoxicillin | 0.4852 | 0.5088 | 104.8533 |
Ciprofloxacin | 0.4403 | 0.4545 | 102.9710 |
Chlorpheniramine | 0.4256 | 0.4419 | 103.8303 |
Prednisolone | 0.3899 | 0.4015 | 102.9700 |
Flunarizine | 0.3737 | 0.3715 | 102.9710 |
Methocarbamol | 0.4728 | 0.4850 | 102.5910 |
表3 方法測試的適用性。萘普生、阿莫西林、環(huán)丙沙星、氯苯那敏、潑尼松龍、氟桂利嗪和美索巴莫在當(dāng)?shù)丨h(huán)境中暴露 5 分鐘。對于每個樣品,取 6 個重復(fù)計(jì)算平均值和 SD
Tablets and capsules | Exposed 5 min. Mean n = 6 | Without exposure. Mean n = 6 | Percentage of recovery |
Naproxen | 0.4026 | 0.4300 | 101.1973 |
Amoxicillin | 0.4741 | 0.5088 | 107.3081 |
Ciprofloxacin | 0.4217 | 0.4545 | 101.1973 |
Chlorpheniramine | 0.4438 | 0.4419 | 99.5718 |
Prednisolone | 0.3967 | 0.4015 | 101.1973 |
Flunarizine | 0.3864 | 0.3715 | 101.1973 |
Methocarbamol | 0.4632 | 0.4850 | 104.7136 |
圖 2 對萘普生、阿莫西林、環(huán)丙沙星、氯苯那敏、潑尼松龍、氟桂利嗪和美索巴莫的固體樣品進(jìn)行了完整的測試(左圖),并與粉碎的藥片(右圖)進(jìn)行了比較。
然而,阿莫西林膠囊似乎更容易受到周圍環(huán)境條件的影響,因?yàn)槟z囊樣品從局部環(huán)境中吸收了水分,導(dǎo)致原始膠囊樣品的水分活度水平增加 105% 以上(表 3)。然而,完整片劑單元與壓碎樣品的平均水分活度水平在統(tǒng)計(jì)上存在差異(方差分析,P < .05)。暴露于局部環(huán)境的樣品與未暴露于局部環(huán)境的樣品的水分活度水平之間觀察到了類似的結(jié)果(方差分析,P < 0.05)。在選擇、開發(fā)和驗(yàn)證露點(diǎn)水分活度儀時,必須考慮這些方法固有的可變性。
因此,考慮到粉碎樣品和在實(shí)驗(yàn)室條件下暴露 5 分鐘的樣品的回收率在 95%–105% 范圍內(nèi),驗(yàn)證是用整片藥片或膠囊進(jìn)行的,盡可能避免固體樣品在周圍實(shí)驗(yàn)室環(huán)境中暴露超過 5 分鐘,因?yàn)闃悠繁环湃胍淮涡运芰媳校缓蠓湃胨只疃葍x測量。整個過程通常只需短暫時間,約為 50 秒即可從鋁箔包裝中取出藥片和膠囊。這種樣品處理至關(guān)重要,因?yàn)樗梢苑乐箻悠匪只疃劝l(fā)生變化。然而,暴露時間超過 5 分鐘通常會導(dǎo)致固體樣品吸收或失去自由水,產(chǎn)生不確定的讀數(shù),并導(dǎo)致水分活度水平增加超過原始樣品的 110%(未顯示日期)。一旦該方法適用于所有測試的藥片和膠囊,就可以按照 USP 第 1225 章類別 III開始驗(yàn)證。
準(zhǔn)確性
標(biāo)準(zhǔn)溶液混合物 (0.25 aw + 0.50 aw)、(0.76 aw + 1 aw) 和 (0.92 aw + 1 aw) 的預(yù)期摩爾分?jǐn)?shù)值與每種混合物的實(shí)驗(yàn)水分活度測量值相比,回收率百分比在 95%–105% 范圍內(nèi)(表 4)。因此,混合物 (0.25aw + 0.50aw)、(0.76 aw + 1 aw) 和 (0.92 aw + 1 aw) 的回收率分別為 96%、103% 和 100%(表 4)。
表 4 回收率。計(jì)算每種混合物的摩爾分?jǐn)?shù),并與設(shè)備的測量值進(jìn)行比較。測量的回收率應(yīng)在預(yù)期真實(shí)值的 95%–105% 范圍內(nèi)
Aqualab 4TE measurement standard 0.25 + 0.50 | Mole fraction: 0.25 × 4 ml + 0.50 × 4 ml/8 ml | % Recovery |
0.3600 | 0.3750 | 96.0000 |
0.3603 | 0.3750 | 96.0800 |
0.3605 | 0.3750 | 96.1300 |
0.3600 | 0.3750 | 96.0000 |
0.3601 | 0.3750 | 96.0300 |
0.3603 | 0.3750 | 96.0800 |
Aqualab 4TE measurement standard 0.76 + 1.0 | Mole fraction: 0.76 × 4ml + 1.0 × 4 ml/8 ml | % Recovery |
0.9087 | 0.8800 | 103.2600 |
0.9076 | 0.8800 | 103.1300 |
0.9076 | 0.8800 | 103.1300 |
0.9077 | 0.8800 | 103.1400 |
0.9082 | 0.8800 | 103.2000 |
0.9083 | 0.8800 | 103.2100 |
Aqualab 4TE measurement standard 0.92 + 1.0 | Mole fraction: 0.92 × 4 ml + 1.0 | % Recovery |
0.9689 | 0.9600 | 100.9200 |
0.9686 | 0.9600 | 100.8900 |
0.9684 | 0.9600 | 100.8700 |
0.9691 | 0.9600 | 100.9400 |
0.9694 | 0.9600 | 100.9700 |
0.9686 | 0.9600 | 100.8900 |
與這些結(jié)果相符的是,與所有標(biāo)準(zhǔn)溶液的真實(shí)值相比,水分活度測量值也顯示回收率在 95%–105% 范圍內(nèi)。這些結(jié)果證明了水分活度儀的讀數(shù)準(zhǔn)確性。
檢測限 (LOD) 和定量限 (LOQ)
確定了露水分活度儀的 LOD 和 LOQ。使用可測量水分活度最的低六個重復(fù)數(shù)據(jù)(aw = 0.25)的標(biāo)準(zhǔn)偏差和相應(yīng)標(biāo)準(zhǔn)曲線的斜率計(jì)算 LOD 和 LOQ。DPCMM 的 LOQ 和 LOD 分別為 aw = 0.25 和 aw = 0.17。藥片和膠囊的預(yù)期水分活度范圍為 0.25 至 0.50,因此露點(diǎn)冷凍法被證明是一種成功量化微小自由水水平并產(chǎn)生準(zhǔn)確和精確結(jié)果的合適工具。
精度和耐用性
為了深入了解水分活度儀的驗(yàn)證,我們估算了重復(fù)性和再現(xiàn)性。露點(diǎn)水分活度儀的精度是指當(dāng)實(shí)驗(yàn)設(shè)計(jì)重復(fù)應(yīng)用于整個測試范圍內(nèi)的多個樣品(每個固體樣品重復(fù)六次)時,各個測試結(jié)果之間的一致程度。對于此實(shí)驗(yàn),耐用性被解釋為中間精度,這是一種實(shí)驗(yàn)室內(nèi)精度,涉及不同批次和操作員對測試結(jié)果變異性以及重復(fù)性的影響。為了觀察這些操作變量對平均水分活度的影響,我們計(jì)算了標(biāo)準(zhǔn)偏差,并進(jìn)行了多因素方差分析 (ANOVA)。
如表 5 所示,對萘普生、阿莫西林、環(huán)丙沙星、氯苯那敏、潑尼松龍、氟桂利嗪和美索巴莫從同一批次重復(fù)進(jìn)行的 6 次測量觀察到的不確定性的標(biāo)準(zhǔn)偏差低于 0.01,表明 露點(diǎn)水分活度儀具有較高的一致性精度(表 5)。但是,對于所有測試的產(chǎn)品,例如萘普生、阿莫西林、環(huán)丙沙星、氯苯那敏、潑尼松龍、氟桂利嗪和美索巴莫,在批次之間觀察到了統(tǒng)計(jì)差異(ANOVA,P < 0.05,表 5)。這些統(tǒng)計(jì)差異對應(yīng)于直接影響所測試片劑和膠囊的水分活度狀態(tài)的制造工藝變化。盡管在批次之間觀察到的平均水分活度存在差異,但水分活度值表現(xiàn)出高度的一致性(SD < 0.03,表 5)。
表 5 耐用性測試:不同批次獲得的水分活度平均值。在 25oC 下測量萘普生、阿莫西林、環(huán)丙沙星、氯苯那敏、潑尼松龍、氟桂利嗪和美索巴莫的水分活度。對于每個樣品,取六次重復(fù)以計(jì)算平均值和 SD
Lot 1 | Lot 2 | Lot 3 | |||||
Mean n = 6 | SD | Mean n = 6 | SD | Mean n = 6 | SD | ANOVA P values | |
Naproxen | 0.4300 | 0.0013 | 0.4267 | 0.0014 | 0.4250 | 0.0013 | 0.0000 |
Amoxicillin | 0.4759 | 0.0007 | 0.5088 | 0.0005 | 0.4462 | 0.0003 | 0.0000 |
Ciprofloxacin | 0.4545 | 0.0012 | 0.4485 | 0.0019 | 0.3424 | 0.0017 | 0.0000 |
Chlorpheniramine | 0.4570 | 0.0013 | 0.4419 | 0.0021 | 0.4246 | 0.0106 | 0.0000 |
Prednisolone | 0.4015 | 0.0007 | 0.4055 | 0.0013 | 0.4075 | 0.0002 | 0.0000 |
Flunarizine | 0.3715 | 0.0023 | 0.3358 | 0.0029 | 0.4718 | 0.0006 | 0.0000 |
同時,也可以看出鏡面冷凝露點(diǎn)水分活度儀,不同操作人員并不會對水分活度數(shù)值有明顯影響(表6,ANOVA,P>0.05)。
表6 耐用性測試:不同操作員對萘普生、阿莫西林、環(huán)丙沙星、氯苯那敏、潑尼松龍、氟桂利嗪和美索巴莫獲得的水分活度平均值
Product name | Operator 1 n = 18 | Operator 2 n = 18 | ANOVA P value |
Naproxen | 0.4272 | 0.4265 | 0.317 |
Amoxicillin | 0.477 | 0.4715 | 0.508 |
Ciprofloxacin | 0.4151 | 0.4128 | 0.985 |
Chlorpheniramine | 0.4412 | 0.4322 | 0.115 |
Prednisolone | 0.4048 | 0.4049 | 0.941 |
Flunarizine | 0.393 | 0.3892 | 0.851 |
Methocarbamol | 0.5003 | 0.5003 | 0.991 |
按照 USP 指南評估了穩(wěn)健性參數(shù)。根據(jù) 1225 章中的信息,Aqualab 4TE水分活度儀測量的水分活度表明它對方法參數(shù)的細(xì)微但有意的變化(例如讀數(shù)溫度的變化(25°C 對 30°C))的干擾很敏感。這樣,測試的萘普生、阿莫西林、環(huán)丙沙星、氯苯那敏、潑尼松龍、氟桂利嗪和美索巴莫樣品的回收率分別為 98.3114%、101.3647%、98.3144%、101.1330%、98.3144%、98.3144% 和 103.1920%(表 7)。這些回收率在規(guī)定的 95%–105%范圍內(nèi),這些差異在統(tǒng)計(jì)上是不同的。
表7 穩(wěn)健性測試:在不同溫度(25oC 與 30oC)下獲得的萘普生、阿莫西林、環(huán)丙沙星、氯苯那敏、潑尼松龍、氟桂利嗪和美索巴莫的水分活度平均值。
Tablets and capsules | 25°C Mean n = 6 | 30°C Mean n = 6 | Percentage of recovery |
Naproxen | 0.4300 | 0.4090 | 98.3144 |
Amoxicillin | 0.5088 | 0.5019 | 101.3647 |
Ciprofloxacin | 0.4545 | 0.4352 | 98.3144 |
Chlorpheniramine | 0.4419 | 0.4369 | 101.1330 |
Prednisolone | 0.4015 | 0.4084 | 98.3144 |
Flunarizine | 0.3715 | 0.3917 | 98.3144 |
Methocarbamol | 0.4850 | 0.4702 | 103.1920 |
微生物檢測
對于每個經(jīng)測試的萘普生、阿莫西林、環(huán)丙沙星、氯苯那敏、潑尼松龍、氟桂利嗪和美索巴莫樣品,其水分活度均符合規(guī)格(aw < 0.60),嗜溫菌(計(jì)數(shù) < 10 cfu/g)、大腸桿菌(無)、酵母和霉菌(計(jì)數(shù) < 10 cfu/g)的微生物測試結(jié)果符合微生物規(guī)格。因此,至少在測試的固體樣品中,水分活度狀態(tài)可被視為微生物負(fù)擔(dān)的可靠測量指標(biāo)。此外,測試的固體樣品至少符合最近 20 批成品、原材料和初級包裝的微生物歷史結(jié)果。
結(jié)論
在 Coaspharma 實(shí)驗(yàn)室進(jìn)行的這項(xiàng)研究中,證明了該方法對萘普生、阿莫西林、環(huán)丙沙星、氯苯那敏、潑尼松龍、氟桂利嗪和美索巴莫的適用性。通常,藥片和膠囊從鋁箔包裝中取出大約需要 1 分鐘,因?yàn)樵趯⑺芰媳湃霚y量室的同時,這些單元也被放入其中。這一信息非常重要,因?yàn)樗梢源_保樣品到達(dá)儀器之前的上一步不會吸收或損失水分活度,從而導(dǎo)致水分活度測量的不確定性。正如該方法的適用性所示,樣品制備和 5 分鐘的曝光時間顯示出水分活度差異,這些差異在預(yù)期的 95%–105% 范圍內(nèi)。但是,水分活度平均值在統(tǒng)計(jì)上存在差異(方差分析,P < .05)。
盡管所有測試樣品的樣品制備和暴露時間存在統(tǒng)計(jì)差異,但這些差異在百分比回收率 95%–105% 范圍內(nèi)。值得注意的是,萘普生、阿莫西林、環(huán)丙沙星、氯苯那敏、潑尼松龍、氟桂利嗪和美索巴莫的平均水分活度約為 0.50,因此與總體自由水分活度相比超過 5% 的差異永遠(yuǎn)不會超過水分活度的規(guī)定值(aw = 0.60),從而確保精確的微生物評估。
此外,還證明基于使用標(biāo)準(zhǔn)溶液校準(zhǔn),可以確定鏡面冷凝露點(diǎn)水分活度儀的線性和操作范圍。證據(jù)表明,這種替代自動化方法可產(chǎn)生精確的結(jié)果(R 2 = 1、CC = 1、% 回收率 >99%)。它能夠不受不同操作變量(例如不同操作員)的影響,這證明了它的可靠性和穩(wěn)定性。雖然在所有測試的藥片和膠囊中都觀察到不同批次之間的水分活度差異(ANOVA P < .05),但這些差異對應(yīng)于影響萘普生、阿莫西林、環(huán)丙沙星、氯苯那敏、潑尼松龍、氟桂利嗪和美索巴莫的水分活度狀態(tài)的制造工藝變化。此外,鏡面冷凝露點(diǎn)水分活度儀的結(jié)果顯示出高度的一致性(SD < 0.01)。
從校準(zhǔn)曲線可以看出,檢測限和定量限分別為 0.17 和 0.25。這些結(jié)果表明露點(diǎn)儀在檢測低最水分活度方面表現(xiàn)良好,確保準(zhǔn)確評估所測試固體樣品的水分活度狀態(tài)。例如,萘普生、阿莫西林、環(huán)丙沙星、氯苯那敏、潑尼松龍、氟桂利嗪和美索巴莫的平均水分活度分別為 0.4272、0.4770、0.4151、0.4412、0.4048、0.3930 和 0.5003。根據(jù)美國藥典第 1112 章所述,水分活度遠(yuǎn)低于 0.75 的藥品是避免微生物測試絕的佳目標(biāo)候選者,因?yàn)樵谌绱说偷乃只疃人较?,有害病原體、嗜溫菌、酵母和霉菌不太可能在藥品上生長 [ 9 ]。
可以將為固體藥物基質(zhì)計(jì)算的所有這些水分活度納入基于風(fēng)險(xiǎn)的方法中,該方法將考慮至少 20 批原材料、初級包裝和最終產(chǎn)品的微生物測試結(jié)果,以及經(jīng)過驗(yàn)證的制造工藝和經(jīng)過驗(yàn)證的清潔工藝。將所有這些項(xiàng)目納入決策樹,可能可以避免逐批進(jìn)行微生物分析,否則就開始跳過批次的微生物測試方案。這些驗(yàn)證結(jié)果有助于將水分活度作為微生物指標(biāo),以評估葉肉、酵母和霉菌的生物負(fù)載,以及水分活度低于 0.60 的藥片和膠囊中的有害微生物,如洋蔥伯克霍爾德菌復(fù)合體和大腸桿菌。
盡管如此,如前所述,在含有高濃度非水性物質(zhì)(如乙醇和丙二醇)的藥物基質(zhì)中,水分活度測量的不確定性可能會嚴(yán)重影響 DPCMM 的準(zhǔn)確性 [ 20 ]。這是一個值得注意的問題,在選擇要驗(yàn)證的樣品時必須考慮,以避免不確定的結(jié)果。然而,考慮到在測試的藥片和膠囊中,除水以外的揮發(fā)性物質(zhì)(如乙醇和丙二醇)的含量可以忽略不計(jì),DPCMM 可以提供精確的結(jié)果。
使用此類替代方法可降低公司倉儲成本、提高庫存控制效率、更快地對不良微生物結(jié)果做出反應(yīng),并減少廢棄物。
參考文獻(xiàn)
References
1. Prada HA, Beltran AU, Celeita SP et al. . Performance equivalence and validation of a rapid microbiological method for detection and quantification of yeast and mold in an antacid oral suspension. PDA J Pharm Sci Technol 2023;77:1–14. doi:10.5731/pdajpst.2021.012632
2. Prada HA, Celeita SP, Fonseca JC. Validation of a rapid microbiological method for the detection and quantification of Burkholderia cepacia complex in an antacid oral suspension. J AOAC Int 2023;5:1288–1294. doi:10.1093/jaoacint/qsad056
3. Prada HA, Celeita SP, Fonseca JC. Efficacy of an automated growth-based system and plate count method on the detection of yeasts and molds in personal care products. J AOAC Int 2023;6:1564–1573. doi:10.1093/jaoacint/qsad075
4. Prada HA. Review on enforcement of alternative microbiological method in the pharmaceutical industry. Syst Rev Pharm 2023;10:616–621. doi:10.31858/0975-8453.14.10.616-621
5. Peris-Vicente J, Carda-Broch S, Esteve-Romero J. Validation of rapid microbiological methods. J Lab Autom 2015;20:259–64. doi:10.1177/2211068214554612
6. Limberg B, Johnstone K, Filloon T et al. . Performance equivalence and validation of the soleris automated system for quantitative microbial content testing using pure suspension cultures. J AOAC Int 2016;99:1331–7. doi:10.5740/jaoacint.16-0142
7. United State Pharmacopeia Convention 43. Rockville, MD, Chapter 1223, 2021.
8. United State Pharmacopeia Convention 43. Rockville, MD, Chapter 1225, 2021.
9. United State Pharmacopeia Convention 43. Rockville, MD, Chapter 1112, 2021.
10. Fontana AJ. Dew-Point method for the determination of water activity. Curr Protoc Food Anal Chem 2001;00:1–10. doi:10.1002/0471142913.faa0202s00
11. United State Pharmacopeia Convention 43. Rockville, MD, Chapter 1111, 2021.
12. Food & Drug Administration. Water Activity (aw) in Food. Dep Health Educ Welf Public Health Service Food Drug Adm 2014;39:1–5.
13. Prior BA. Measurement of water activity in foods: a review. J Food Prot 1979;42:668–74. doi:10.4315/0362-028X-42.8.668
14. Scott WJ. Water relations of food spoilage microorganisms. Adv Food Res 1957;7:83–127. procite:b91e2dc0-475c-41e0-8884-251fc3d7ac76
15. United State Pharmacopeia Convention 43. Rockville, MD, Chapter 922, 2021.
16. United State Pharmacopeia Convention 43. Rockville, MD, Chapter 1058, 2021.
17. Parental Drug Association. Evaluation, validation and implementation of alternative and rapid microbial methods. Technical Report No. 33. Parental Drug Association, PDA, 2013.
18. John AT. Statistical analysis of aw measurements btained with the sina Scope. J Food Sci 1977;42:86–90. doi:10.1111/j.1365-2621.1977.tb01224.x
19. Nelson ED, Powlus E, Gbeddy E et al. . Development and validation of a high throughput GC measurement for water activity. J Pharm Biomed Anal 2007;43:1352–7. doi:10.1016/j.jpba.2006.11.016
20. Campbell GS, Galloway M, Campbell Z. Measurement of water activity in the presence of high volatile concentration using a tunable diode laser-single laboratory validation, first action 202104. J AOAC Int 2022;105:649–56. doi:10.1093/jaoacint/qsac003