欧美……一区二区三区,欧美日韩亚洲另类视频,亚洲国产欧美日韩中字,日本一区二区三区dvd视频在线

產(chǎn)品展廳收藏該商鋪

您好 登錄 注冊

當(dāng)前位置:
湖南遠(yuǎn)湘生物科技有限公司>>Ossila>>英國Ossila材料M261/PTB7-Th/PBDTTT-EFT/英國Ossila材料PCE10

英國Ossila材料M261/PTB7-Th/PBDTTT-EFT/英國Ossila材料PCE10

返回列表頁
  • 英國Ossila材料M261/PTB7-Th/PBDTTT-EFT/英國Ossila材料PCE10

收藏
舉報
參考價 面議
具體成交價以合同協(xié)議為準(zhǔn)
  • 型號
  • 品牌 Osslia
  • 廠商性質(zhì) 代理商
  • 所在地 長沙市

在線詢價 收藏產(chǎn)品 加入對比 查看聯(lián)系電話

更新時間:2023-04-02 18:57:59瀏覽次數(shù):9556

聯(lián)系我們時請說明是化工儀器網(wǎng)上看到的信息,謝謝!

產(chǎn)品簡介

英國Ossila材料M261/PTB7-Th/PBDTTT-EFT/英國Ossila材料PCE10
英國Ossila代理、廠家直接訂貨、原裝正品、交期準(zhǔn)時、洽談?。?!

詳細(xì)介紹

只用于動物實驗研究等

Batch details

Batch numberMWPDIStock info
M261> 40,0001.8-2.0In stock

英國Ossila材料M261/PTB7-Th/PBDTTT-EFT/英國Ossila材料PCE10

General Information

Full namePoly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b']dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl)]
SynonymsPCE10 / PBDTTT-EFT / PTB7-Th
Chemical formula(C49H57FO2S6)n
CAS number1469791-66-9
HOMO / LUMOHOMO = 5.24 eV, LUMO = 3.66 eV [1]
Opticalλmax = 720 nm; λedge = 785 nm; Eg (optical) = 1.58 eV
Classification / Family

Thienothiophene, Benzodithiophene, Heterocyclic five-membered ring, Organic semiconducting materials, Low band gap polymers, Organic Photovoltaics, Polymer Solar Cells

Applications

PCE10 (PTB7-Th, PBDTTT-EFT) is one of the new generation of OPV donor polymers that could deliver on the heralded 10/10 target of 10% efficiency and 10 years lifetime. Brand new to the Ossila catalogue, this material is already showing impressive potential with in excess of 9% efficiency reported in the literature and over 7% produced when using large area deposition processes in air with a standard architecture [1,2]. In our own labs we have achieved efficiencies of over 9%.

The advantages of PCE10 are that not only does the material lower HOMO/LUMO levels and increase the efficiencies compared to PTB7, but more significantly it is also far more stable. Early indications are that it can be handled under ambient conditions without issues, suggesting that we can look forward to measuring the long term lifetime of the devices.

PCE10 is one of the most exciting materials to have made it out of the labs in recent years and offers huge potential for more in depth research. We'll be working hard over the next few months to maximise efficiencies by optimising the device architecture, and we will provide further results as we do so. In the mean time, our current fabrication routine is below, and should you have any further questions or queries please contact us.

Usage Details

Reference Devices

Reference devices were made on batch M261 to assess the effect of PBDTTT-EFT:PC70BM active layer thickness on OPV efficiency with the below structure. These were fabricated under inert atmosphere (N2glovebox) before encapsulation and measurement under ambient conditions.

Glass / ITO (100 nm) / PEDOT:PSS (30 nm) / PBDTTT-EFT:PC70BM (1:1.5) / Ca (5 nm) / Al (100 nm)

For generic details please see the fabrication guide and video. For specific details please see the below condensed fabrication report which details the optical modelling and optimisation of the multilayer stack.

The PBDTTT-EFT:PC70BM solution was made in chlorobenzene at 35 mg/ml before being diluted with 3% diiodooctane (DIO) to promote the correct morphology.

Active layer thicknesses were achieved from spincasting the film at spin speeds of 2000, 2700, 3900 and 6000 rpm for 30s. Additionally, a methanol wash was performed for all devices to help remove the DIO additive. For each of these spin speeds a total of 2 substrates (3 in the case of 2700 rpm) was produced, each with 8 pixels and the data presented below represents a non-subjective (no human intervention) analysis of the best 75% of pixels by PCE (18 pixels for 2700 rpm condition, 12 pixels for each other).

Overall, the average efficiency of 8.30% PCE (9.01% maximum) was found from a 2700 rpm spin speed.

ote on effect of epoxy: Due to the very high solubility of the PBDTTT-EFT it was noted during fabrication that the film changed colour when in contact with the encapsulation epoxy in liquid form for extended periods indicating that there was some miscibility. Inspection of the active areas underneath the top cathode indicated that the epoxy had not seeped into the active area before curing and device metrics indicate that this did not appear to affect performance. However, we would recommend minimising contact time between the epoxy and PBDTTT-EFT films before UV curing.

英國Ossila材料M261/PTB7-Th/PBDTTT-EFT/英國Ossila材料PCE10

Condensed Fabrication Routine

Substrates and cleaning

  • Edgeless 8 pixel substrates (S211)
  • 5 minutes sonication in hot 10% NaOH solution
  • 1x boiling DI dump rinse, 1x cold dump rinse
  • 5 minutes sonication in hot 1% Hellmanex III
  • 2x boiling DI rinses, DI
  • 5 minutes sonication in warm IPA
  • 1x boiling DI dump rinse, 1x cold dump rinse
  • N2 blow dry
  • Substrates held on a hotplate at 120°C before spin-coating the hole transport layer (no further cleaning or surface treatment required)

PEDOT:PSS

  • PEDOT:PSS (AI4083) filtered through a 0.45 µm PVDF filter
  • Spin on heated substrates at 6000 rpm for 30s
  • Bake at 120°C after spincast
  • Cathode strip wipe with DI, replaced back on hotplate until transfer to glovebox
  • Additional bake in the glovebox for 30 mins to remove residual moisture

Active Layer Solution

  • Fresh stock solutions of PBDTTT-EFT (M261) made at a concentration 14 mg/ml in anhydrous CB and dissolved at 70°C for 1.5 hours
  • Mixed with dry Ossila 95% C70 PCBM at a blend ratio of 1:1.5 to make an overall solution concentration of 35 mg/ml
  • Mixed in 3% DIO and then heated the solution at 70°C with a stirbar for 2 hours
  • Cooled prior to spincasting

Active layer test films

  • Test film spun at 2000 rpm for 30s using unfiltered solution with a methanol wash before measuring with a Dektak surface profiler
  • Reference film displayed a thickness of 140 nm

Active layers

  • Devices spun using 30 µl dynamic dispense for 30s
  • Methanol wash was then immediay performed as a secondary spin step, 20 µl at 4000 rpm for 30 seconds
  • Cathode wiped with CB

Evaporation

Left in vacuum chamber overnight and evaporated with the below parameters.

  • 5 nm Ca at 0.2 ?/s
  • 100 nm Al at 1.5 ?/s
  • Deposition pressure

Encapsulation

  • As standard using Ossila EE1, 30 mins UV in MEGA LV101

Measurements

  • JV sweeps taken with Keithley 237 source-meter
  • Illumination by Newport Oriel 9225-1000 solar simulator with 100 mW/cm2 AM1.5 output
  • NREL certified silicon reference cell used to calibrate
  • Lamp current: 7.8 A
  • Solar output at start of testing: 1.00 suns at 23°C
  • Solar output at end of testing: 1.00 suns at 25°C
  • Air cooled substrates
  • Room temperature at start of testing : 25°C
  • Room temperature at end of testing: 25°C
  • No aperture mask, pixel size: 0.4 mm2

 

To the best of our knowledge the technical information provided here is accurate. However, Ossila assume no liability for the accuracy of this information. The values provided here are typical at the time of manufacture and may vary over time and from batch to batch.

References

Please note that Ossila has no formal connection to any of the authors or institutions in these references):

  1. Side Chain Selection for Designing Highly Efficient Photovoltaic Polymers with 2D-Conjugated Structure, S. Zhang et al., Macromolecules, 47, 4653-4659 (2014)
  2. Highly Efficient 2D-Conjugated Benzodithiophene-Based Photovoltaic Polymer with Linear Alkylthio Side Chain?, L. Ye et al., Chemistry of Materials., 26, 3603-3605 (2014)

收藏該商鋪

登錄 后再收藏

提示

您的留言已提交成功!我們將在第一時間回復(fù)您~

對比框

產(chǎn)品對比 產(chǎn)品對比 聯(lián)系電話 二維碼 意見反饋 在線交流

掃一掃訪問手機(jī)商鋪
0755-23003036
在線留言
国产精品v欧美精品v日韩精品-国产欧美日韩精品区一区二污污污| 国产剧情av中文字幕-五月婷婷在线手机视频| 国产小黄片高清在线观看-涩涩鲁精品亚洲一区二区| 丝袜高跟熟女视频国产-熟女少妇亚洲一区二区| 欧美看片一区二区三区-人妻无卡精品视频在线| av网址在线直接观看-黄色av全部在线观看| 婷婷综合在线视频观看-亚洲一区二区三区香蕉| 亚洲另类自拍唯美另类-99国产精品兔免久久| 国产欧美日本不卡精美视频-日本后入视频在线观看| 日韩毛片在线免费人视频-超碰中文字幕av在线| 亚洲av高清一区三区三区-久久人妻夜夜做天天爽| 欧美精品国产白浆久久正在-国产精彩视频一区二区三区| 看肥婆女人黄色儿逼视频-秋霞电影一区二区三区四区| 欧美成人精品巨臀大屁股-亚洲综合欧美日韩一区| 国产福利视频一区二区三区-日韩人妻中文视频精品| 白嫩美女娇喘呻吟高潮-久久一区二区三区日产精品| 蜜臀一区二区三区精品在线-99久久久精品免费看国产| 欧美精品一区二区不卡-精品国产一区二区三区香蕉网址| 日本中文字幕永久在线人妻蜜臀-欧美一区二区的网站在线观看| 人妻日韩精品中文字幕图片-麻豆极度性感诱人在线露脸| 午夜日韩精品在线视频-亚洲网老鸭窝男人的天堂| 欧美精品一区二区三区爽爽爽-日韩国产精品亚洲经典| 日韩精品一区二区三区粉嫩av-欧美亚洲国产中文字幕| 在线免费观看黄片喷水-国产精品白丝网站在线观看| 亚洲av日韩五月天久热精品-国产日韩欧美一区二区三区群战| 中文字幕亚洲综合久久最新-久久精品视频免费久久久| 亚洲精品蜜桃在线观看-国产欧美日韩在线观看精品观看| 亚洲欧美另类综合偷拍-婷婷社区综合在线观看| 国模自慰一区二区三区-日韩一级黄色片天天看| 亚洲综合av一区二区三区-高潮又爽又黄无遮挡激情视频| 婷婷亚洲欧美综合丁香亚洲-超刺激国语对白在线视频| 欧美日韩国产综合新一区-国产综合av一区二区三区| 午夜精品午夜福利在线-内射无套内射国产精品视频| 久久网址一区二区精品视频-日产国产欧美视频一区精品| 一级特黄大片亚洲高清-国产精品视频伊人久久| 黄色av网站在线免费观看-亚洲欧美精品偷拍tv| 天天干天天干2018-91人妻人人澡人爽精品| 亚洲一区二区少妇激情-国产精品美女久久高潮| 国产欧美日本不卡精美视频-日本后入视频在线观看| 熟妇勾子乱一区二区三区-欧美爱爱视频一区二区| 国产精品中出久久久蜜臀-久久久中国精品视频久久久|